Two new adenopeptins B and C inhibit sphere formation of pancreatic cancer cells

Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395:2008–20.

Article  CAS  PubMed  Google Scholar 

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

Article  PubMed  Google Scholar 

Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther. 2020;11:489.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.

Article  CAS  PubMed  Google Scholar 

Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26:2839–45.

Article  CAS  PubMed  Google Scholar 

Jena BC, Das CK, Bharadwaj D, Mandal M. Cancer associated fibroblast mediated chemoresistance: a paradigm shift in understanding the mechanism of tumor progression. Biochim Biophys Acta Rev Cancer. 2020;1874:188416.

Article  CAS  PubMed  Google Scholar 

Boesch M, et al. Heterogeneity of cancer stem cells: rationale for targeting the stem cell niche. Bba-Rev Cancer. 2016;1866:276–89.

CAS  Google Scholar 

Nair N, et al. A cancer stem cell model as the point of origin of cancerassociated fibroblasts in tumor microenvironment. Sci Rep. 2017;7:6838.

Article  PubMed  PubMed Central  Google Scholar 

Tatsuda D, Yoshida J, Ohishi T, Kawada M. Pancreatic stromal cell-derived Oncostatin M confers drug resistance to a multi-tyrosine kinase inhibitor in pancreatic cancer cells. Anticancer Res. 2023;43:2477–89.

Article  CAS  PubMed  Google Scholar 

Shintani Y, et al. Pulmonary fibroblasts induce epithelial mesenchymal transition and some characteristics of stem cells in non-small cell lung cancer. Ann Thorac Surg. 2013;96:425–33.

Article  PubMed  Google Scholar 

Tatsuda D, et al. Coccoquinones A and B, new anthraquinone derivatives produced by Staphylotrichum coccosporum PF1460. J Antibiot. 2016;69:176–8.

Article  CAS  Google Scholar 

Kawada M, Inoue H, Usami I, Ikeda D. Phthoxazolin A inhibits prostate cancer growth by modulating tumor-stromal cell interactions. Cancer Sci. 2009;100:150–7.

Article  CAS  PubMed  Google Scholar 

Yoshida J, et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience. 2021;24:103497.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayakawa Y, Adachi M, Kim JW, Shin-Ya K, Seto H. Adenopeptin, a new apoptosis inducer in transformed cells from Chrysosporium sp. Tetrahedron. 1998;54:15871–8.

Article  CAS  Google Scholar 

Iijima M, et al. Acremopeptin, a new peptaibol from Acremonium sp PF1450. J Antibiot. 2017;70:791–4.

Article  CAS  Google Scholar 

Walcher L, et al. Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayakawa Y, et al. Efrapeptin J, a new down-regulator of the molecular chaperone GRP78 from a marine Tolypocladium sp. J Antibiot. 2008;61:365–71.

Article  CAS  Google Scholar 

Momose I, et al. Mitochondrial inhibitors show preferential cytotoxicity to human pancreatic cancer PANC-1 cells under glucose-deprived conditions. Biochem Bioph Res Commun. 2010;392:460–6.

Article  CAS  Google Scholar 

Papathanassiu AE, MacDonald NJ, Emlet DR, Vu HA. Antitumor activity of efrapeptins, alone or in combination with 2-deoxyglucose, in breast cancer in vitro and in vivo. Cell Stress Chaperon. 2011;16:181–93.

Article  CAS  Google Scholar 

Kitamura K, Itoh H, Sakurai K, Dan S, Inoue M. Target identification of Yaku’amide B and its two distinct activities against mitochondrial FoF1-ATP synthase. J Am Chem Soc. 2018;140:12189–99.

Article  CAS  PubMed  Google Scholar 

Shchepina LA, et al. Oligomycin, inhibitor of the F-0 part of H+-ATP-synthase, suppresses the TNF-induced apoptosis. Oncogene. 2002;21:8149–57.

Article  CAS  PubMed  Google Scholar 

Vaamonde-Garcia C, et al. Oligomycin, an inhibitor of complex V of the mitochondrial respiratory chain, induces an inflammatory and oxidative response in rat knee joint. Osteoarthr Cartilage. 2014;22:S293–4.

Article  Google Scholar 

Ikeda H, Kawami M, Imoto M, Kakeya H. Identification of the polyether ionophore lenoremycin through a new screening strategy for targeting cancer stem cells. J Antibiot. 2022;75:671–8.

Article  CAS  Google Scholar 

Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother. 2005;59:380–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang KS, et al. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. PLoS ONE. 2010;5:e10296.

Article  PubMed  PubMed Central  Google Scholar 

Xue D, Zhou X, Qiu J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother. 2020;131:110676.

Article  CAS  PubMed  Google Scholar 

Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

Article  CAS  PubMed  Google Scholar 

Sancho P, et al. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22:590–605.

Article  CAS  PubMed  Google Scholar 

Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47:333–43.

Article  CAS  PubMed  Google Scholar 

Lamb R, et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget. 2015;6:4569–84.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif