CLAD-Net: cross-layer aggregation attention network for real-time endoscopic instrument detection

Omisore OM, Han S, Xiong J, Li H, Li Z, Wang L. A review on flexible robotic systems for minimally invasive surgery. IEEE Trans Syst Man Cybern Syst. 2020;52(1):631–44.

Article  Google Scholar 

Tonutti M, Elson DS, Yang G-Z, Darzi AW, Sodergren MH. The role of technology in minimally invasive surgery: state of the art, recent developments and future directions. Postgrad Med J. 2017;93(1097):159–67.

Article  Google Scholar 

Casas-Yrurzum S, Gimeno J, Casanova-Salas P, García-Pereira I, Olmo E, Salvador A, Guijarro R, Zaragoza C, Fernández M. A new mixed reality tool for training in minimally invasive robotic-assisted surgery. Health Inform Sci Syst. 2023;11(1):34.

Article  Google Scholar 

Kim M, Kim H-S, Oh SW, Adsul NM, Singh R, Kashlan ON, Noh JH, Jang IT, Oh SH. Evolution of spinal endoscopic surgery. Neurospine. 2019;16(1):6–14.

Article  Google Scholar 

Chu Y, Yang X, Li H, Ai D, Ding Y, Fan J, Song H, Yang J. Multi-level feature aggregation network for instrument identification of endoscopic images. Phys Med Biol. 2020;65(16): 165004.

Article  Google Scholar 

Lam K, Lo FP-W, An Y, Darzi A, Kinross JM, Purkayastha S, Lo B. Deep learning for instrument detection and assessment of operative skill in surgical videos. IEEE Trans Med Robot Bion. 2022;4(4):1068–71.

Article  Google Scholar 

Fuente López E, García ÁM, Del Blanco LS, Marinero JCF, Turiel JP. Automatic gauze tracking in laparoscopic surgery using image texture analysis. Comput Methods Programs Biomed. 2020;190:105378.

Article  Google Scholar 

Cartucho J, Wang C, Huang B, Elson SD, Darzi A, Giannarou S. An enhanced marker pattern that achieves improved accuracy in surgical tool tracking. Comput Methods Biomech Biomed Eng. 2022;10(4):400–8.

Google Scholar 

Kranzfelder M, Schneider A, Fiolka A, Schwan E, Gillen S, Wilhelm D, Schirren R, Reiser S, Jensen B, Feussner H. Real-time instrument detection in minimally invasive surgery using radiofrequency identification technology. J Surgical Res. 2013;185(2):704–10.

Article  Google Scholar 

Liu Y, Zhao Z, Shi P, Li F. Towards surgical tools detection and operative skill assessment based on deep learning. IEEE Trans Med Robot Bion. 2022;4(1):62–71.

Article  Google Scholar 

Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:2980–2988.

Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39(6):1137–49.

Article  Google Scholar 

Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016:779–788.

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC. SSD: Single shot multibox detector. In: European conference on computer vision, 2016:21–37.

Liu Y, Zhang C, Wu W, Zhang B, Zhou F. MiniYOLO: a lightweight object detection algorithm that realizes the trade-off between model size and detection accuracy. Int J Intell Syst. 2022;37(12):12135–51.

Article  Google Scholar 

Peng J, Chen Q, Kang L, Jie H, Han Y. Autonomous recognition of multiple surgical instruments tips based on arrow obb-yolo network. IEEE Trans Instrum Meas. 2022;71:1–13.

Google Scholar 

Sarki R, Ahmed K, Wang H, Zhang Y. Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inform Sci Syst. 2020;8(1):32.

Article  Google Scholar 

Qin F, Li Y, Su Y-H, Xu D, Hannaford B. Surgical instrument segmentation for endoscopic vision with data fusion of cnn prediction and kinematic pose. In: 2019 international conference on robotics and automation (ICRA), 2019:9821–9827.

Yamashita K, Kusuda K, Ito Y, Komino M, Tanaka K, Kurokawa S, Ameya M, Eba D, Masamune K, Muragaki Y, et al. Evaluation of surgical instruments with radiofrequency identification tags in the operating room. Surgical Innov. 2018;25(4):374–9.

Article  Google Scholar 

Yang C, Zhao Z, Hu S. Image-based laparoscopic tool detection and tracking using convolutional neural networks: a review of the literature. Comput Assist Surg. 2020;25(1):15–28.

Article  Google Scholar 

Xue Y, Liu S, Li Y, Wang P, Qian X. A new weakly supervised strategy for surgical tool detection. Knowl-Based Syst. 2022;239: 107860.

Article  Google Scholar 

Namazi B, Sankaranarayanan G, Devarajan V. A contextual detector of surgical tools in laparoscopic videos using deep learning. Surg Endosc. 2021;8:1–10.

Google Scholar 

Yang L, Gu Y, Bian G, Liu Y. TMF-Net: a transformer-based multiscale fusion network for surgical instrument segmentation from endoscopic images. IEEE Trans Instrum Meas. 2023;72:1–15.

Google Scholar 

Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017:2117–2125.

Wang C, Zhong C. Adaptive feature pyramid networks for object detection. IEEE Access. 2021;9:107024–32.

Article  Google Scholar 

Li Z, Lang C, Liew JH, Li Y, Hou Q, Feng J. Cross-layer feature pyramid network for salient object detection. IEEE Trans Image Process. 2021;30:4587–98.

Article  Google Scholar 

Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018:7132–7141.

Woo S, Park J, Lee J-Y, Kweon IS. CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), 2018:3–19.

Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021:13713–13722.

Peng Y, Xu Y, Wang M, Zhang H, Xie J. The nnU-Net based method for automatic segmenting fetal brain tissues. Health Inform Sci Syst. 2023;11(1):17.

Article  Google Scholar 

Wang H, Cao P, Yang J, Zaiane O. MCA-UNet: multi-scale cross co-attentional u-net for automatic medical image segmentation. Health Inform Sci Syst. 2023;11(1):10.

Article  Google Scholar 

Lin Z, He Z, Yao R, Wang X, Liu T, Deng Y, Xie S. Deep dual attention network for precise diagnosis of Covid-19 from chest ct images. In: IEEE Transactions on Artificial Intelligence, 2022:1–11.

Ni Z-L, Bian G-B, Xie X-L, Hou Z-G, Zhou X-H, Zhou Y-J. RASNet: Segmentation for tracking surgical instruments in surgical videos using refined attention segmentation network. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2019:5735–5738.

Liu T, He Z, Lin Z, Cao G-Z, Su W, Xie S. An adaptive image segmentation network for surface defect detection. In: IEEE Transactions on Neural Networks and Learning Systems, 2022:1–14.

Li Y, Li Y, He W, Shi W, Wang T, Li Y. SE-OHFM: A surgical phase recognition network with se attention module. In: 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), 2021:608–611.

Shaw P, Uszkoreit J, Vaswani A. Self-Attention with relative position representations. arXiv preprint arXiv:1803.02155 2018.

Xu Y, Huang H, Feng C, Hu Y. A supervised multi-head self-attention network for nested named entity recognition. Proc AAAI Conf Artif Intell. 2021;35:14185–93.

Google Scholar 

Twinanda AP, Shehata S, Mutter D, Marescaux J, De Mathelin M, Padoy N. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging. 2016;36(1):86–97.

Article  Google Scholar 

Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D. Distance-IoU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI conference on artificial intelligence, 2020:12993–13000.

Zhou X, Wang D, Krähenbühl P. Objects as points. arXiv preprint arXiv:1904.07850 2019.

Tan M, Pang R, Le QV. Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020:10781–10790.

Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In: European conference on computer vision, 2020:213–229.

ultralytics: yolov5. https://github.com/ultralytics/yolov5

Ge Z, Liu S,Wang F, Li Z, Sun J. YOLOX: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 2021.

Li C, Li L, Jiang H, Weng K, Geng Y, Li L, Ke Z, Li Q, Cheng M, Nie W et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976 2022.

Lv W, Xu S, Zhao Y, Wang G, Wei J, Cui C, Du Y, Dang Q, Liu Y. Detrs beat yolos on real-time object detection. arXiv preprint arXiv:2304.08069 2023.

Sarikaya D, Corso JJ, Guru KA. Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans Med Imaging. 2017;36(7):1542–9.

Article  Google Scholar 

Shi M, Shen J, Yi Q, Weng J, Huang Z, Luo A, Zhou Y. LMFFNet: a well-balanced lightweight network for fast and accurate semantic segmentation. IEEE Trans Neural Netw Learn Syst. 2023;34(6):3205–19.

Article  Google Scholar 

Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-c. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems. 2015;28.

Xu H, Xie H, Tan Q, Zhang Y. Meta semi-supervised medical image segmentation with label hierarchy. Health Inform Sci Syst. 2023;11(1):26.

Article  Google Scholar 

留言 (0)

沒有登入
gif