Convolutional neural network framework for EEG-based ADHD diagnosis in children

Konrad A, Dielentheis TF, El Masri D, Bayerl M, Fehr C, Gesierich T, Vucurevic G, Stoeter P, Winterer G. Disturbed structural connectivity is related to inattention and impulsivity in adult attention deficit hyperactivity disorder. Eur J Neurosci. 2010;31(5):912–9.

Article  Google Scholar 

Verma R, Balhara YPS, Mathur S. Management of attention-deficit hyperactivity disorder. J Pediatr Neurosci. 2011;6(1):13–8.

Article  Google Scholar 

Mattfeld AT, Gabrieli JD, Biederman J, Spencer T, Brown A, Kotte A, Kagan E, Whitfield-Gabrieli S. Brain differences between persistent and remitted attention deficit hyperactivity disorder. Brain. 2014;137(9):2423–8.

Article  Google Scholar 

Schwarz A. ADHD: the statistics of a national disaster. Significance. 2016;13(6):20–3.

Article  Google Scholar 

Millions of Indian Children (and Parents) Struggle with ADHD. https://www.neeuro.com/blog/adhd-india. Accessed 01 December 2023

Costello EJ, Egger H, Angold A. 10-year research update review: the epidemiology of child and adolescent psychiatric disorders: I. Methods and public health burden. J Am Acad Child Adolesc Psychiatry 2005;44(10):972–86.

Article  Google Scholar 

Joy RC, George ST, Rajan AA, Subathra M, Sairamya N, Prasanna J, Mohammed MA, Al-Waisy AS, Jaber MM, Al-Andoli MN. Detection and classification of ADHD from EEG signals using tunable Q-factor wavelet transform. J Sens. 2022. https://doi.org/10.1155/2022/3590973.

Article  Google Scholar 

Silberstein RB, Pipingas A, Farrow M, Levy F, Stough CK, Camfield DA. Brain functional connectivity abnormalities in attention-deficit hyperactivity disorder. Brain Behav. 2016;6(12):00583.

Google Scholar 

Agarwal M, Singhal A. Fusion of pattern-based and statistical features for schizophrenia detection from EEG signals. Med Eng Phys. 2023;112: 103949.

Article  Google Scholar 

Mohammad-Rezazadeh I, Frohlich J, Loo SK, Jeste SS. Brain connectivity in autism spectrum disorder. Curr Opin Neurol. 2016;29(2):137.

Article  Google Scholar 

Deco G, Kringelbach ML. Metastability and coherence: extending the communication through coherence hypothesis using a whole-brain computational perspective. Trends Neurosci. 2016;39(3):125–35.

Article  Google Scholar 

Agarwal M, Singhal A. A Gaussian filtering approach for accurate detection of schizophrenia. Iran J Sci Technol Trans Electr Eng. 2024. https://doi.org/10.1007/s40998-024-00738-6.

Article  Google Scholar 

Talebi N, Nasrabadi AM. Investigating the discrimination of linear and nonlinear effective connectivity patterns of eeg signals in children with attention-deficit/hyperactivity disorder and typically developing children. Comput Biol Med. 2022;148: 105791.

Article  Google Scholar 

Ahmadlou M, Adeli H. Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci. 2010;41(1):1–10.

Article  Google Scholar 

Allahverdy A, Moghadam AK, Mohammadi MR, Nasrabadi AM. Detecting ADHD children using the attention continuity as nonlinear feature of EEG. Front Biomed Technol 2016;3(1–2):28–33.

Google Scholar 

Loh HW, Ooi CP, Oh SL, Barua PD, Tan YR, Acharya UR, Fung DSS. ADHD/CD-NET: automated EEG-based characterization of ADHD and CD using explainable deep neural network technique. Cogn Neurodyn. 2023;18(4):1609–25.

Article  Google Scholar 

Barua PD, Dogan S, Baygin M, Tuncer T, Palmer EE, Ciaccio EJ, Acharya UR. TMP19: A novel ternary motif pattern-based adhd detection model using EEG signals. Diagnostics. 2022;12(10):2544.

Article  Google Scholar 

Bakhtyari M, Mirzaei S. Adhd detection using dynamic connectivity patterns of EEG data and CONVLSTM with attention framework. Biomed Signal Process Control. 2022;76: 103708.

Article  Google Scholar 

Ghassemi F, Hassan Moradi M, Tehrani-Doost M, Abootalebi V. Using non-linear features of EEG for ADHD/normal participants’ classification. Procedia Soc Behav Sci. 2012;32:148–52.

Article  Google Scholar 

Yaghoobi Karimu R, Azadi S. Diagnosing the ADHD using a mixture of expert fuzzy models. Int J Fuzzy Syst. 2018;20:1282–96.

Article  Google Scholar 

Tor HT, Ooi CP, Lim-Ashworth NS, Wei JKE, Jahmunah V, Oh SL, Acharya UR, Fung DSS. Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals. Comput Methods Programs Biomed. 2021;200: 105941.

Article  Google Scholar 

Boroujeni YK, Rastegari AA, Khodadadi H. Diagnosis of attention deficit hyperactivity disorder using non-linear analysis of the EEG signal. IET Syst Biol. 2019;13(5):260–6.

Article  Google Scholar 

Nasrabadi AM, Allahverdy A, Samavati M, Mohammadi MR. EEG data for ADHD/control children. IEEE Dataport (2020). https://doi.org/10.21227/rzfh-zn36

Sweeney KT, Ward TE, McLoone SF. Artifact removal in physiological signals—practices and possibilities. IEEE Trans Inf Technol Biomed. 2012;16(3):488–500.

Article  Google Scholar 

Singhal A, Singh P, Fatimah B, Pachori RB. An efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique. Biomed Signal Process Control. 2020;57: 101741.

Article  Google Scholar 

Helps SK, Broyd SJ, Bitsakou P, Sonuga-Barke EJ. Identifying a distinctive familial frequency band in reaction time fluctuations in ADHD. Neuropsychology. 2011;25(6):711.

Article  Google Scholar 

Lenartowicz A, Loo SK. Use of EEG to diagnose ADHD. Curr Psychiatry Rep. 2014;16:1–11.

Article  Google Scholar 

Akour I, Rahamneh A, Al Kurdi B, Alhamad A, Al-Makhariz I, Alshurideh M, Al-Hawary S. Using the canonical correlation analysis method to study students’ levels in face-to-face and online education in Jordan. Inf Sci Lett. 2023;12:901–10.

Article  Google Scholar 

Hassan U, Singhal A, Chaudhary P. Lung disease detection using EasyNet. Biomed Signal Process Control. 2024;91: 105944.

Article  Google Scholar 

Hassan U, Singhal A. Automated diagnosis of pulmonary diseases using lung sound signals. IETE J Res. 2023. https://doi.org/10.1080/03772063.2023.2258495.

Article  Google Scholar 

Duun-Henriksen J, Kjaer TW, Madsen RE, Remvig LS, Thomsen CE, Sorensen HBD. Channel selection for automatic seizure detection. Clin Neurophysiol. 2012;123(1):84–92.

Article  Google Scholar 

Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND, Li W, Parrish TB, Gitelman DR, Marsel Mesulam M. Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry. 2005;46(1):94–111.

Article  Google Scholar 

Kelly AC, Margulies DS, Castellanos FX. Recent advances in structural and functional brain imaging studies of attention-deficit/hyperactivity disorder. Curr Psychiatry Rep. 2007;9(5):401–7.

Article  Google Scholar 

Ekhlasi A, Nasrabadi AM, Mohammadi MR. Direction of information flow between brain regions in adhd and healthy children based on eeg by using directed phase transfer entropy. Cogn Neurodyn. 2021;15(6):975–86.

Article  Google Scholar 

Maniruzzaman M, Hasan MAM, Asai N, Shin J. Optimal channels and features selection based ADHD detection from EEG signal using statistical and machine learning techniques. IEEE Access. 2023;11:33570–83.

Article  Google Scholar 

Chen H, Chen W, Song Y, Sun L, Li X. EEG characteristics of children with attention-deficit/hyperactivity disorder. Neuroscience. 2019;406:444–56.

Article  Google Scholar 

Alkahtani H, Aldhyani TH, Ahmed ZA, Alqarni AA. Developing system-based artificial intelligence models for detecting the attention deficit hyperactivity disorder. Mathematics. 2023;11(22):4698.

Article  Google Scholar 

Parashar A, Kalra N, Singh J, Goyal RK. Machine learning based framework for classification of children with adhd and healthy controls. Intell Autom Soft Comput. 2021;28(3):669–82.

Article  Google Scholar 

Ahire N, Awale R, Wagh A. Electroencephalogram (EEG) based prediction of attention deficit hyperactivity disorder (ADHD) using machine learning. Appl Neuropsychol Adult. 2023. https://doi.org/10.1080/23279095.2023.2247702.

Article  Google Scholar 

Atila O, Deniz E, Ari A, Sengur A, Chakraborty S, Barua PD, Acharya UR. Lsgp-usfnet: automated attention deficit hyperactivity disorder detection using locations of Sophie Germain’s primes on Ulam’s spiral-based features with electroencephalogram signals. Sensors. 2023;23(16):7032.

Article  Google Scholar 

TaghiBeyglou B, Shahbazi A, Bagheri F, Akbarian S, Jahed M. Detection of ADHD cases using CNN and classical classifiers of raw EEG. Comput Methods Programs Biomed Update. 2022;2: 100080.

Article  Google Scholar 

Moghaddari M, Lighvan MZ, Danishvar S. Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG. Comput Methods Programs Biomed. 2020;197: 105738.

Article  Google Scholar 

Tosun M. Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning. Phys Eng Sci Med. 2021;44(3):693–702.

Article  Google Scholar 

Maniruzzaman M, Shin J, Hasan MAM, Yasumura A. Efficient feature selection and machine learning based ADHD detection using EEG signal. Comput Mater Contin. 2022;72(3):5179–95.

Google Scholar 

Comments (0)

No login
gif