The combination treatment of methylprednisolone and growth factor-rich serum ameliorates the structural and functional changes after spinal cord injury in rat

Anjum A, Yazid MDI, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21:7533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schuld C, Franz S, Brüggemann K, Heutehaus L, Weidner N, Kirshblum SC, et al. International standards for neurological classification of spinal cord injury: impact of the revised worksheet (revision 02/13) on classification performance. J Spinal Cord Med. 2016;39:504–12.

Article  PubMed  PubMed Central  Google Scholar 

Hausmann OB. Post-traumatic inflammation following spinal cord injury. Spinal Cord. 2003;41:369–78.

Article  CAS  PubMed  Google Scholar 

Okada S. The pathophysiological role of acute inflammation after spinal cord injury. Inflamm Regeneration. 2016;36:1–7.

Article  Google Scholar 

Sayer FT, Kronvall E, Nilsson OG. Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine J. 2006;6:335–43.

Article  PubMed  Google Scholar 

Bartholdi D, Schwab ME. Methylprednisolone inhibits early inflammatory processes but not ischemic cell death after experimental spinal cord lesion in the rat. Brain Res. 1995;672:177–86.

Article  CAS  PubMed  Google Scholar 

Fu ES, Saporta S. Methylprednisolone inhibits production of interleukin-1β and interleukin-6 in the spinal cord following compression injury in rats. J Neurosurgical Anesthesiol. 2005;17:82–5.

Article  Google Scholar 

Xu J, Fan G, Chen S, Wu Y, Xu XM, Hsu CY. Methylprednisolone inhibition of TNF-α expression and NF-kB activation after spinal cord injury in rats. Mol Brain Res. 1998;59:135–42.

Article  CAS  PubMed  Google Scholar 

Chikuda H, Yasunaga H, Takeshita K, Horiguchi H, Kawaguchi H, Ohe K, et al. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: a propensity-matched analysis using a nationwide administrative database. Emerg Med J. 2014;31:201–6.

Article  PubMed  Google Scholar 

Pavlovic V, Ciric M, Jovanovic V, Stojanovic P. Platelet rich plasma: a short overview of certain bioactive components. Open Med. 2016;11:242–7.

Article  CAS  Google Scholar 

Anitua E, Prado R, Sánchez M, Orive G. Platelet-rich plasma: preparation and formulation. Operative Tech Orthop. 2012;22:25–32.

Article  Google Scholar 

Kojima A, Tator CH. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J Neurotrauma. 2002;19:223–38.

Article  PubMed  Google Scholar 

Chen N-F, Sung C-S, Wen Z-H, Chen C-H, Feng C-W, Hung H-C, et al. Therapeutic effect of platelet-rich plasma in rat spinal cord injuries. Front Neurosci. 2018;12:252.

Article  PubMed  PubMed Central  Google Scholar 

White RE, Yin FQ, Jakeman LB. TGF-α increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice. Exp Neurol. 2008;214:10–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baffour R, Achanta K, Kaufman J, Berman J, Garb JL, Rhee S, et al. Synergistic effect of basic fibroblast growth factor and methylprednisolone on neurological function after experimental spinal cord injury. J Neurosurg. 1995;83:105–10.

Article  CAS  PubMed  Google Scholar 

Bi J, Feng E, Sun P, Shen J, Chen C, Tan H, et al. Melatonin synergizes with methylprednisolone to ameliorate acute spinal cord injury. Front Pharmacol. 2022;12:3764.

Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res. 2020;37:1–17.

Article  Google Scholar 

Poon PC, Gupta D, Shoichet MS, Tator CH. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates. Spine. 2007;32:2853–9.

Article  PubMed  Google Scholar 

Kang B-J, Yu S-H, Cho D-C, Sung J-K, Park J-Y, Cho H-J, et al. Neurologic and histological study of clip compression model for rat thoracic spinal cord injuries. Korean J Spine. 2011;8:24–30.

Rivlin A, Tator C. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surgical Neurol. 1978;10:38–43.

CAS  Google Scholar 

Khorsand Ghaffari M. A modified method for Preparation of growth factor rich serum (GFRS) from human blood. 2021. https://doi.org/10.13140/RG.2.2.16164.81289.

Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21.

Article  CAS  PubMed  Google Scholar 

Avila-Martin G, Mata-Roig M, Galan-Arriero I, Taylor JS, Busquets X, Escriba PV. Treatment with albumin-hydroxyoleic acid complex restores sensorimotor function in rats with spinal cord injury: efficacy and gene expression regulation. Plos one. 2017;12:e0189151.

Article  PubMed  PubMed Central  Google Scholar 

Erfanizadeh M, Noorafshan A, Naseh M, Karbalay-Doust S. The effects of copper sulfate on the structure and function of the rat cerebellum: a stereological and behavioral study. IBRO Neurosci Rep. 2021;11:119–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asadi-Golshan R, Razban V, Mirzaei E, Rahmanian A, Khajeh S, Mostafavi-Pour Z, et al. Efficacy of dental pulp-derived stem cells conditioned medium loaded in collagen hydrogel in spinal cord injury in rats: stereological evidence. J Chem Neuroanat. 2021;116:101978.

Article  CAS  PubMed  Google Scholar 

Gundersen H, BENDTSEN TF, KORBO L, MARCUSSEN N, Møller A, Nielsen K, et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Apmis. 1988;96:379–94.

Article  CAS  PubMed  Google Scholar 

Kristiansen SLB, Nyengaard JR. Digital stereology in neuropathology. Apmis. 2012;120:327–40.

Article  PubMed  Google Scholar 

Aziz I, Che Ramli MD, Mohd Zain NS, Sanusi J. Behavioral and histopathological study of changes in spinal cord injured rats supplemented with Spirulina platensis. Evid Based Complement Alternat Med. 2014;2014:871657.

de Mesquita Coutinho P, Cristante A, de Barros Filho T, Ferreira R, Dos Santos G. Effects of tacrolimus and erythropoietin in experimental spinal cord lesion in rats: functional and histological evaluation. Spinal Cord. 2016;54:439–44.

Article  PubMed  Google Scholar 

Naseh M, Dehghanian A, Ketabchi F. Vagotomy improves hypoxic pulmonary vasoconstriction in rats subjected to brain ischemia-reperfusion injury. Iran J Med Sci. 2020;45:250.

PubMed  Google Scholar 

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

Article  CAS  PubMed  Google Scholar 

Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal cord. 2012;50:264–74.

Article  CAS  PubMed  Google Scholar 

Lucas JH, Wheeler DG, Guan Z, Suntres Z, Stokes BT. Effect of glutathione augmentation on lipid peroxidation after spinal cord injury. J neurotrauma. 2002;19:763–75.

Article  PubMed  Google Scholar 

Wang W, Ballatori N. Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev. 1998;50:335–56.

CAS  PubMed  Google Scholar 

Jiang ZS, Pu ZC, Hao ZH. Carvacrol protects against spinal cord injury in rats via suppressing oxidative stress and the endothelial nitric oxide synthase pathway. Mol Med Rep. 2015;12:5349–54.

Article  CAS  PubMed  Google Scholar 

Yan P, Xu J, Li Q, Chen S, Kim G-M, Hsu CY, et al. Glucocorticoid receptor expression in the spinal cord after traumatic injury in adult rats. J Neurosci. 1999;19:9355–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabrera-Aldana EE, Ruelas F, Aranda C, Rincon-Heredia R, Martínez-Cruz A, Reyes-Sánchez A, et al. Methylprednisolone administration following spinal cord injury reduces aquaporin 4 expression and exacerbates edema. Mediators of inflammation. 2017;1–7. https://doi.org/10.1155/2017/4792932.

Zou H-j, Guo S-W, Zhu L, Xu X, Liu J-b. Methylprednisolone induces neuro-protective effects via the inhibition of A1 astrocyte activation in traumatic spinal cord injury mouse models. Front Neurosci. 2021;15. https://doi.org/10.3389/fnins.2021.628917.

Liu J-t, Zhang S, Gu B, Li H-n, Wang S-y, Zhang S-y. Methotrexate combined with methylprednisolone for the recovery of motor function and differential gene expression in rats with spinal cord injury. Neural Regeneration Res. 2017;12:1507.

Article  CAS  Google Scholar 

Pereira JE, Costa LM, Cabrita AM, Couto PA, Filipe VM, Magalhães LG, et al. Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats. Exp Neurol. 2009;220:71–81.

Article  CAS  PubMed  Google Scholar 

Li X-G, Lin X-J, Du J-H, Xu S-Z, Lou X-F, Chen Z. Combination of methylprednisolone and rosiglitazone promotes recovery of neurological function after spinal cord injury. Neural Regeneration Res. 2016;11:1678.

Article  CAS  Google Scholar 

Mu X, Azbill RD, Springer JE. Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury. J Neurotrauma. 2000;17:773–80.

Article  CAS  PubMed  Google Scholar 

Ji B, Li M, Budel S, Pepinsky RB, Walus L, Engber TM, et al. Effect of combined treatment with methylprednisolone and soluble Nogo‐66 receptor after rat spinal cord injury. Eur J Neurosci. 2005;22:587–94.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif