Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates

Alappat JJ (2007) Ethnic variation in the incidence of ALS: a systematic review. Neurology 69(7):711. https://doi.org/10.1212/01.wnl.0000285431.01005.67. (author reply 711-712)

Article  PubMed  Google Scholar 

Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 36(6):846–858. https://doi.org/10.1002/ana.410360608

Article  CAS  PubMed  Google Scholar 

Amado DA, Davidson BL (2021) Gene therapy for ALS: a review. Mol Ther 29(12):3345–3358. https://doi.org/10.1016/j.ymthe.2021.04.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baczyk M, Manuel M, Roselli F, Zytnicki D (2022a) Diversity of mammalian motoneurons and motor units. Adv Neurobiol 28:131–150. https://doi.org/10.1007/978-3-031-07167-6_6

Article  PubMed  Google Scholar 

Baczyk M, Manuel M, Roselli F, Zytnicki D (2022b) From physiological properties to selective vulnerability of motor units in amyotrophic lateral sclerosis. Adv Neurobiol 28:375–394. https://doi.org/10.1007/978-3-031-07167-6_15

Article  PubMed  Google Scholar 

Bellingham MC (2011) A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 17(1):4–31. https://doi.org/10.1111/j.1755-5949.2009.00116.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330(9):585–591. https://doi.org/10.1056/NEJM199403033300901

Article  CAS  PubMed  Google Scholar 

Bernard-Marissal N, Moumen A, Sunyach C, Pellegrino C, Dudley K, Henderson CE, Raoul C, Pettmann B (2012) Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J Neurosci 32(14):4901–4912. https://doi.org/10.1523/JNEUROSCI.5431-11.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernard-Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B (2015) Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis 73:130–136. https://doi.org/10.1016/j.nbd.2014.09.009

Article  CAS  PubMed  Google Scholar 

Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392. https://doi.org/10.1126/science.1123511

Article  CAS  PubMed  Google Scholar 

Brockington A, Ning K, Heath PR, Wood E, Kirby J, Fusi N, Lawrence N, Wharton SB, Ince PG, Shaw PJ (2013) Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol 125(1):95–109. https://doi.org/10.1007/s00401-012-1058-5

Article  CAS  PubMed  Google Scholar 

Burke RE (1999) Revisiting the notion of “motor unit types.” Prog Brain Res 123:167–175

Article  CAS  PubMed  Google Scholar 

Burke RE, Tsairis P (1973) Anatomy and innervation ratios in motor units of cat gastrocnemius. J Physiol 234(3):749–765. https://doi.org/10.1113/jphysiol.1973.sp010370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burke RE, Levine DN, Zajac FE 3rd (1971) Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 174(4010):709–712. https://doi.org/10.1126/science.174.4010.709

Article  CAS  PubMed  Google Scholar 

Burke RE, Levine DN, Salcman M, Tsairis P (1974) Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol 238(3):503–514. https://doi.org/10.1113/jphysiol.1974.sp010540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burke RE, Dum RP, Fleshman JW, Glenn LL, Lev-Tov A, O’Donovan MJ, Pinter MJ (1982) A HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol 209(1):17–28. https://doi.org/10.1002/cne.902090103

Article  CAS  PubMed  Google Scholar 

Button DC, Kalmar JM, Gardiner K, Cahill F, Gardiner PF (2007) Spike frequency adaptation of rat hindlimb motoneurons. J Appl Physiol (1985) 102(3):1041–1050. https://doi.org/10.1152/japplphysiol.01148.2006

Article  PubMed  Google Scholar 

Cain MD, Salimi H, Diamond MS, Klein RS (2019) Mechanisms of pathogen invasion into the central nervous system. Neuron 103(5):771–783. https://doi.org/10.1016/j.neuron.2019.07.015

Article  CAS  PubMed  Google Scholar 

Caligari M, Godi M, Guglielmetti S, Franchignoni F, Nardone A (2013) Eye tracking communication devices in amyotrophic lateral sclerosis: impact on disability and quality of life. Amyotroph Lateral Scler Frontotemporal Degener 14(7–8):546–552. https://doi.org/10.3109/21678421.2013.803576

Article  PubMed  Google Scholar 

Chio A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41(2):118–130. https://doi.org/10.1159/000351153

Article  CAS  PubMed  Google Scholar 

Christoforidou E, Joilin G, Hafezparast M (2020) Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. J Neuroinflamm 17(1):135. https://doi.org/10.1186/s12974-020-01822-4

Article  CAS  Google Scholar 

Collaborators GBDMND (2018) Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(12):1083–1097. https://doi.org/10.1016/S1474-4422(18)30404-6

Article  Google Scholar 

Comley L, Allodi I, Nichterwitz S, Nizzardo M, Simone C, Corti S, Hedlund E (2015) Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS. Neuroscience 291:216–229. https://doi.org/10.1016/j.neuroscience.2015.02.013

Article  CAS  PubMed  Google Scholar 

Comley LH, Nijssen J, Frost-Nylen J, Hedlund E (2016) Cross-disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology. J Comp Neurol 524(7):1424–1442. https://doi.org/10.1002/cne.23917

Article  PubMed  Google Scholar 

Cullheim S, Fleshman JW, Glenn LL, Burke RE (1987) Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. J Comp Neurol 255(1):68–81. https://doi.org/10.1002/cne.902550106

Article  CAS  PubMed  Google Scholar 

Da Cruz S, Parone PA, Lopes VS, Lillo C, McAlonis-Downes M, Lee SK, Vetto AP, Petrosyan S, Marsala M, Murphy AN, Williams DS, Spiegelman BM, Cleveland DW (2012) Elevated PGC-1alpha activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab 15(5):778–786. https://doi.org/10.1016/j.cmet.2012.03.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dadon-Nachum M, Melamed E, Offen D (2011) The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci 43(3):470–477. https://doi.org/10.1007/s12031-010-9467-1

Article  CAS  PubMed  Google Scholar 

de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, van den Berg LH, Van Den Bosch L, van Damme P, Kiernan MC, van Es MA, Vucic S (2020) TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 92(1):86–95. https://doi.org/10.1136/jnnp-2020-322983

Article  PubMed  Google Scholar 

De Winter F, Vo T, Stam FJ, Wisman LA, Bar PR, Niclou SP, van Muiswinkel FL, Verhaagen J (2006) The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci 32(1–2):102–117. https://doi.org/10.1016/j.mcn.2006.03.002

Article  CAS  PubMed  Google Scholar 

Dengler R, Konstanzer A, Kuther G, Hesse S, Wolf W, Struppler A (1990) Amyotrophic lateral sclerosis—macro-EMG and twitch forces of single motor units. Muscle Nerve 13(6):545–550. https://doi.org/10.1002/mus.880130612

Article  CAS  PubMed  Google Scholar 

Filezac de L’Etang A, Maharjan N, Cordeiro Brana M, Ruegsegger C, Rehmann R, Goswami A, Roos A, Troost D, Schneider BL, Weis J, Saxena S (2015) Marinesco-Sjogren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci 18(2):227–238. https://doi.org/10.1038/nn.3903

Article  CAS  PubMed  Google Scholar 

Fitzpatrick D (2001) Lower motor neuron circuits and motor control: overview. In: Purves D, Augustine GJ, Fitzpatrick D (eds) Neuroscience. NCBI Bookshelf, Bethesda

Google Scholar 

Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20(7):2534–2542. https://doi.org/10.1523/JNEUROSCI.20-07-02534.2000

Article  CAS 

留言 (0)

沒有登入
gif