Knochenhauer ES, et al. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83(9):3078–82.
Asuncion M, et al. A prospective study of the prevalence of the polycystic ovary syndrome in unselected caucasian women from Spain. J Clin Endocrinol Metab. 2000;85(7):2434–8.
Dumesic DA, et al. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525.
Article CAS PubMed PubMed Central Google Scholar
Group ECW. Health and fertility in World Health Organization group 2 anovulatory women. Hum Reprod Update. 2012;18(5):586–99.
Hamilton-Fairley D, Taylor A. Anovulation BMJ. 2003;327(7414):546–9.
Parker J, O’Brien C, Gersh FL. Developmental origins and transgenerational inheritance of polycystic ovary syndrome. Aust N Z J Obstet Gynaecol. 2021;61(6):922–6.
Hewlett M, et al. Prenatal exposure to endocrine disruptors: a developmental etiology for polycystic ovary syndrome. Reprod Sci. 2017;24(1):19–27.
Article CAS PubMed Google Scholar
Abbott DH, Dumesic DA, Levine JE. Hyperandrogenic origins of polycystic ovary syndrome - implications for pathophysiology and therapy. Expert Rev Endocrinol Metab. 2019;14(2):131–43.
Article CAS PubMed PubMed Central Google Scholar
Abbott DH, et al. In utero androgen excess: a developmental commonality preceding polycystic ovary syndrome? Front Horm Res. 2019;53:1–17.
Article CAS PubMed PubMed Central Google Scholar
Stener-Victorin E et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev, 2020. 41(4).
Naigaonkar A, et al. Altered redox status may contribute to aberrant folliculogenesis and poor reproductive outcomes in women with polycystic ovary syndrome. J Assist Reprod Genet. 2021;38(10):2609–23.
Article PubMed PubMed Central Google Scholar
Mohammadi M. Oxidative stress and polycystic ovary syndrome: a brief review. Int J Prev Med. 2019;10:86.
Article PubMed PubMed Central Google Scholar
Gonzalez F, et al. Elevated serum levels of Tumor necrosis factor alpha in normal-weight women with polycystic ovary syndrome. Metabolism. 1999;48(4):437–41.
Article CAS PubMed Google Scholar
Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes. 1999;107(2):119–25.
Article CAS PubMed Google Scholar
Hernández-Jiménez JL, et al. Polycystic ovarian syndrome: signs and feedback effects of hyperandrogenism and insulin resistance. Gynecol Endocrinol. 2022;38(1):2–9.
Dabravolski SA et al. Mitochondrial dysfunction and chronic inflammation in polycystic ovary syndrome. Int J Mol Sci, 2021. 22(8).
Zeber-Lubecka N, Ciebiera M, Hennig EE. Polycystic ovary syndrome and oxidative stress-from bench to Bedside. Int J Mol Sci, 2023. 24(18).
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83.
Article CAS PubMed Google Scholar
Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine biomarkers of oxidative DNA damage: a review on HPLC-ECD determination. Molecules, 2022. 27(5).
Sova H, et al. Distinctively low levels of serum 8-hydroxydeoxyguanosine in women with polycystic ovary syndrome. Fertil Steril. 2010;94(7):2670–3.
Article CAS PubMed Google Scholar
Kelly CC, et al. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86(6):2453–5.
Article CAS PubMed Google Scholar
Mouanness M et al. Contribution of Advanced Glycation End products to PCOS Key Elements: a narrative review. Nutrients, 2022. 14(17).
Enechukwu CI, et al. Oxidative stress markers and lipid profiles of patients with polycystic ovary syndrome in a Nigerian tertiary hospital. Obstet Gynecol Sci. 2019;62(5):335–43.
Article PubMed PubMed Central Google Scholar
Rudnicka E, et al. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: oxidative stress in polycystic ovary syndrome. Reproduction. 2022;164(6):F145–f154.
Article CAS PubMed Google Scholar
Li W, et al. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome. Front Nutr. 2022;9:1018674.
Article PubMed PubMed Central Google Scholar
Azziz R, et al. The androgen excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456–88.
Munro MG, et al. The FIGO Ovulatory disorders classification system. Fertil Steril. 2022;118(4):768–86.
Siddiqui S, et al. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2022;39(11):2439–73.
Article PubMed PubMed Central Google Scholar
Chappell NR, Gibbons WE, Blesson CS. Pathology of hyperandrogenemia in the oocyte of polycystic ovary syndrome. Steroids. 2022;180:108989.
Article CAS PubMed PubMed Central Google Scholar
Liao B, et al. Effects of Androgen excess-related metabolic disturbances on Granulosa cell function and Follicular Development. Front Endocrinol (Lausanne). 2022;13:815968.
Immediata V et al. Oxidative Stress and Human Ovarian Response-From Somatic Ovarian Cells to Oocytes Damage: A Clinical Comprehensive Narrative Review Antioxidants (Basel), 2022. 11(7).
Chappel S. The role of mitochondria from mature oocyte to viable blastocyst Obstet Gynecol Int, 2013. 2013: p. 183024.
Wang LY, et al. Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ Sci B. 2009;10(7):483–92.
Article CAS PubMed PubMed Central Google Scholar
Shaeib F, et al. The Defensive Role of Cumulus Cells against Reactive Oxygen Species Insult in metaphase II mouse oocytes. Reprod Sci. 2016;23(4):498–507.
Article CAS PubMed Google Scholar
Banerjee J, et al. Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle structure in vitro. Fertil Steril. 2013;100(2):578–584e1.
Article CAS PubMed Google Scholar
Ruegsegger GN, et al. Altered mitochondrial function in insulin-deficient and insulin-resistant states. J Clin Invest. 2018;128(9):3671–81.
Article PubMed PubMed Central Google Scholar
Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–14.
Article CAS PubMed PubMed Central Google Scholar
Lewis MT et al. Quantification of mitochondrial oxidative phosphorylation in metabolic Disease: application to type 2 Diabetes. Int J Mol Sci, 2019. 20(21).
Bardaweel SK, et al. Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian J Med. 2018;50(3):193–201.
Article CAS PubMed PubMed Central Google Scholar
Izyumov DS, et al. Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants–the Skulachev-ion derivatives. Biochem (Mosc). 2010;75(2):123–9.
Cubero FJ, Nieto N. Arachidonic acid stimulates TNFα production in Kupffer cells via a reactive oxygen species-pERK1/2-Egr1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2012;303(2):G228–39.
Article CAS PubMed PubMed Central Google Scholar
Lassègue B, San A, Martín, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364–90.
Article PubMed PubMed Central Google Scholar
Camp OG, et al. Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: the link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin. Nitric Oxide. 2022;124:32–8.
Article CAS PubMed Google Scholar
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and Disease. Physiol Rev. 2007;87(1):315–424.
Article CAS PubMed Google Scholar
Stadler K. Peroxynitrite-driven mechanisms in Diabetes and insulin resistance - the latest advances. Curr Med Chem. 2011;18(2):280–90.
Comments (0)