A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS

Knochenhauer ES, et al. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83(9):3078–82.

CAS  PubMed  Google Scholar 

Asuncion M, et al. A prospective study of the prevalence of the polycystic ovary syndrome in unselected caucasian women from Spain. J Clin Endocrinol Metab. 2000;85(7):2434–8.

CAS  PubMed  Google Scholar 

Dumesic DA, et al. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Group ECW. Health and fertility in World Health Organization group 2 anovulatory women. Hum Reprod Update. 2012;18(5):586–99.

Article  Google Scholar 

Hamilton-Fairley D, Taylor A. Anovulation BMJ. 2003;327(7414):546–9.

Article  PubMed  Google Scholar 

Parker J, O’Brien C, Gersh FL. Developmental origins and transgenerational inheritance of polycystic ovary syndrome. Aust N Z J Obstet Gynaecol. 2021;61(6):922–6.

Article  PubMed  Google Scholar 

Hewlett M, et al. Prenatal exposure to endocrine disruptors: a developmental etiology for polycystic ovary syndrome. Reprod Sci. 2017;24(1):19–27.

Article  CAS  PubMed  Google Scholar 

Abbott DH, Dumesic DA, Levine JE. Hyperandrogenic origins of polycystic ovary syndrome - implications for pathophysiology and therapy. Expert Rev Endocrinol Metab. 2019;14(2):131–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbott DH, et al. In utero androgen excess: a developmental commonality preceding polycystic ovary syndrome? Front Horm Res. 2019;53:1–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stener-Victorin E et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev, 2020. 41(4).

Naigaonkar A, et al. Altered redox status may contribute to aberrant folliculogenesis and poor reproductive outcomes in women with polycystic ovary syndrome. J Assist Reprod Genet. 2021;38(10):2609–23.

Article  PubMed  PubMed Central  Google Scholar 

Mohammadi M. Oxidative stress and polycystic ovary syndrome: a brief review. Int J Prev Med. 2019;10:86.

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez F, et al. Elevated serum levels of Tumor necrosis factor alpha in normal-weight women with polycystic ovary syndrome. Metabolism. 1999;48(4):437–41.

Article  CAS  PubMed  Google Scholar 

Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes. 1999;107(2):119–25.

Article  CAS  PubMed  Google Scholar 

Hernández-Jiménez JL, et al. Polycystic ovarian syndrome: signs and feedback effects of hyperandrogenism and insulin resistance. Gynecol Endocrinol. 2022;38(1):2–9.

Article  PubMed  Google Scholar 

Dabravolski SA et al. Mitochondrial dysfunction and chronic inflammation in polycystic ovary syndrome. Int J Mol Sci, 2021. 22(8).

Zeber-Lubecka N, Ciebiera M, Hennig EE. Polycystic ovary syndrome and oxidative stress-from bench to Bedside. Int J Mol Sci, 2023. 24(18).

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83.

Article  CAS  PubMed  Google Scholar 

Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine biomarkers of oxidative DNA damage: a review on HPLC-ECD determination. Molecules, 2022. 27(5).

Sova H, et al. Distinctively low levels of serum 8-hydroxydeoxyguanosine in women with polycystic ovary syndrome. Fertil Steril. 2010;94(7):2670–3.

Article  CAS  PubMed  Google Scholar 

Kelly CC, et al. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86(6):2453–5.

Article  CAS  PubMed  Google Scholar 

Mouanness M et al. Contribution of Advanced Glycation End products to PCOS Key Elements: a narrative review. Nutrients, 2022. 14(17).

Enechukwu CI, et al. Oxidative stress markers and lipid profiles of patients with polycystic ovary syndrome in a Nigerian tertiary hospital. Obstet Gynecol Sci. 2019;62(5):335–43.

Article  PubMed  PubMed Central  Google Scholar 

Rudnicka E, et al. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: oxidative stress in polycystic ovary syndrome. Reproduction. 2022;164(6):F145–f154.

Article  CAS  PubMed  Google Scholar 

Li W, et al. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome. Front Nutr. 2022;9:1018674.

Article  PubMed  PubMed Central  Google Scholar 

Azziz R, et al. The androgen excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456–88.

Article  PubMed  Google Scholar 

Munro MG, et al. The FIGO Ovulatory disorders classification system. Fertil Steril. 2022;118(4):768–86.

Article  PubMed  Google Scholar 

Siddiqui S, et al. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2022;39(11):2439–73.

Article  PubMed  PubMed Central  Google Scholar 

Chappell NR, Gibbons WE, Blesson CS. Pathology of hyperandrogenemia in the oocyte of polycystic ovary syndrome. Steroids. 2022;180:108989.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao B, et al. Effects of Androgen excess-related metabolic disturbances on Granulosa cell function and Follicular Development. Front Endocrinol (Lausanne). 2022;13:815968.

Article  PubMed  Google Scholar 

Immediata V et al. Oxidative Stress and Human Ovarian Response-From Somatic Ovarian Cells to Oocytes Damage: A Clinical Comprehensive Narrative Review Antioxidants (Basel), 2022. 11(7).

Chappel S. The role of mitochondria from mature oocyte to viable blastocyst Obstet Gynecol Int, 2013. 2013: p. 183024.

Wang LY, et al. Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ Sci B. 2009;10(7):483–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaeib F, et al. The Defensive Role of Cumulus Cells against Reactive Oxygen Species Insult in metaphase II mouse oocytes. Reprod Sci. 2016;23(4):498–507.

Article  CAS  PubMed  Google Scholar 

Banerjee J, et al. Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle structure in vitro. Fertil Steril. 2013;100(2):578–584e1.

Article  CAS  PubMed  Google Scholar 

Ruegsegger GN, et al. Altered mitochondrial function in insulin-deficient and insulin-resistant states. J Clin Invest. 2018;128(9):3671–81.

Article  PubMed  PubMed Central  Google Scholar 

Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis MT et al. Quantification of mitochondrial oxidative phosphorylation in metabolic Disease: application to type 2 Diabetes. Int J Mol Sci, 2019. 20(21).

Bardaweel SK, et al. Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian J Med. 2018;50(3):193–201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izyumov DS, et al. Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants–the Skulachev-ion derivatives. Biochem (Mosc). 2010;75(2):123–9.

Article  CAS  Google Scholar 

Cubero FJ, Nieto N. Arachidonic acid stimulates TNFα production in Kupffer cells via a reactive oxygen species-pERK1/2-Egr1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2012;303(2):G228–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lassègue B, San A, Martín, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364–90.

Article  PubMed  PubMed Central  Google Scholar 

Camp OG, et al. Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: the link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin. Nitric Oxide. 2022;124:32–8.

Article  CAS  PubMed  Google Scholar 

Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and Disease. Physiol Rev. 2007;87(1):315–424.

Article  CAS  PubMed  Google Scholar 

Stadler K. Peroxynitrite-driven mechanisms in Diabetes and insulin resistance - the latest advances. Curr Med Chem. 2011;18(2):280–90.

Article 

Comments (0)

No login
gif