Functionalized Graphene Oxide with Bismuth and Titanium Oxide Nanoparticles for Efficiently Removing Formaldehyde from the Air by Photocatalytic Degradation–Adsorption Process

EPA. Toxicological review of formaldehyde (Inhalation). Environmental Protection Agency, Washington DC., 2010. https://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=223614

IARC. Monographs on the evaluation of carcinogenic risks: Formaldehyde, 2-ButoxyeTEMPthanol and 1-tert-Butoxypropan-2-ol. International Agency for Research on Cancer, 2011. http://monographs.iarc.fr/ENG/Monographs/vol88/index.phpExitDisclaimer

NTP. National Toxicology Program, Report on Carcinogens. Department of health and human services, Twelfth Edition; 2011. http://ntp.niehs.nih.gov/go/roc12

Cao H, Fu TM, Zhang L, Henze DK, Miller CC, Lerot C, Abad GG, De Smedt I, Zhang Q, Van Roozendael M, Hendrick F, Chance K, Li J, Zheng J, Zhao Y. Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. Atmos Chem Phys. 2018;18(20):15017–46.

Article  CAS  Google Scholar 

Soni V, Goel V, Singh P, Garg A. Abatement of formaldehyde with photocatalytic and catalytic oxidation: a review. Int J Chem React Eng. 2021;19(1):1–29.

Article  CAS  Google Scholar 

Zhu Z, Wu RJ. The degradation of formaldehyde using a Pt@ TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem Eng. 2014;50:276–81.

Article  Google Scholar 

Liu SH, Lin WX. A simple method to prepare G-C3N4- TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde. J Hazard Mater. 2019;368:468–76.

Article  CAS  PubMed  Google Scholar 

Qin Y, Wang Z, Jiang J, Xing L, Wu K. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde. Chem Eng J. 2020;394: 124917.

Article  CAS  Google Scholar 

Yuan J, Xu P, Wang J, Zhang W, Zhou J, Lai A, Wang L. Experimental study on the removal of formaldehyde by plasma-catalyst. IOP Conf Series. 2019;435: 012004.

Google Scholar 

Ye J, Zhu X, Cheng B, Yu J, Jiang C. Few-layered graphene-like boron nitride: a highly efficient adsorbent for indoor formaldehyde removal. Environ Sci Technol Lett. 2017;4:20–5.

Article  CAS  Google Scholar 

Yang X, Zhao H, Qu Z, He M, Tang Z, Lai S, Wang Z. The effect of oxygen-containing functional groups on formaldehyde adsorption in solution on carbon surface: a density functional theory study. J Environ Chem Eng. 2021;9:105987.

Article  CAS  Google Scholar 

Chang SM, Hu SC, Shiue A, Lee PY, Leggett G. Adsorption of silver nano-particles modified activated carbon filter media for indoor formaldehyde removal. Chem Phys Lett. 2020;757:137864.

Article  CAS  Google Scholar 

Wang L, Wu Y, Liu S, Zhang Y, Chen Y, Ma H, Zhou J. MnO2-loaded activated carbon and its adsorption of formaldehyde. Bioresour. 2019;14:7193–212.

Article  CAS  Google Scholar 

Shiue A, Hu SC, Tseng CH, Chuang CM, Leggett G. Assessment of adsorptive filter for removal of formaldehyde from indoor air. Aerosol Air Qual Res. 2018;18:3147–64.

Article  Google Scholar 

Photong S, Boonamnuayvitaya V. Preparation and characterization of amine-functionalized SiO2/TiO2 films for formaldehyde degradation. Appl Surf Sci. 2009;255:9311–5.

Article  CAS  Google Scholar 

Su J, Cheng C, Guo Y, Xu H, Ke Q. OMS-2-based catalysts with controllable hierarchical morphologies for highly efficient catalytic oxidation of formaldehyde. J Hazard Mater. 2019;15: 120890.

Article  Google Scholar 

Lu L, Tian H, He J, Yang Q. Graphene–MnO2 hybrid nanostructure as a new catalyst for formaldehyde oxidation. J Phys Chem C. 2016;120:23660–8.

Article  CAS  Google Scholar 

Afzal A, Vahidi H, Fakhraie S. Benzene extraction in environmental samples based on the mixture of nano activated carbon and ionic liquid coated on fused silica fiber before determination by headspace solid-phase microextraction-gas chromatography. Anal Method Environ Chem J. 2021;4(1):68–78.

Article  Google Scholar 

Alsayadi YMMA, Arora S. A review: total vaporization solid-phase microextraction procedure in different matrixes. Anal Methods Environ Chem J. 2022;5(3):80–102.

Article  CAS  Google Scholar 

Gou M, Yarahmadi BB. Removal of ethylbenzene from air by graphene quantum dots and multi wall carbon nanotubes in present of UV radiation. Anal Methods Environ Chem J. 2019;2(4):59–70.

Article  CAS  Google Scholar 

Hosseinabadi MB, Timoori S, Zarandi AF. Functionalized graphene-trimethoxyphenyl silane for toluene removal from workplace air by sorbent gas extraction method. Anal Method Environ Chem J. 2019;2(2):45–54.

Article  CAS  Google Scholar 

Jamshidzadeh C. A new analytical method based on bismuth oxide-fullerene nanoparticles and photocatalytic oxidation technique for toluene removal from workplace air. Anal Method Environ Chem J. 2019;2(1):73–86.

Article  CAS  Google Scholar 

Kazemi NM, Yaqoubi M. Synthesis of bismuth oxide: removal of benzene from waters by bismuth oxide nanostructures. Anal Methods Environ Chem J. 2019;2(4):5–14.

Article  CAS  Google Scholar 

Yue L, Cheng R, Ding W, Shao J, Li J, Lyu J. Composited micropores constructed by amorphous TiO2 and graphene for degrading volatile organic compounds. Appl Surf Sci. 2019;471:1–7.

Article  CAS  Google Scholar 

Raizada P, Sudhaik A. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Tech. 2019;2(1):509–25.

Google Scholar 

Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–40.

Article  CAS  PubMed  Google Scholar 

Paixão MM, Tadeu M, Vianna G, Marques M. Graphene and graphene nanocomposites for the removal of aromatic organic compounds from the water: systematic review. Mater Res Express. 2018;5: 012002.

Article  Google Scholar 

Teimoori Sh, Hassani AH, Panahi M, Mansouri N. A review: methods for removal and adsorption of volatile organic compounds from environmental matrixes. Anal Method Environ Chem J. 2020;3(2):34–58.

Article  CAS  Google Scholar 

Pourbahman F, Zeeb M, Monzavi A, Homami S, Khodadadi Z. Reusable and sustainable graphene oxide/metal–organic framework-74/Fe3O4/polytyramine nanocomposite for simultaneous trace level quantification of five fluoroquinolones in egg samples by high performance liquid chromatography. Anal Methods Environ Chem J. 2021;4(2):5–24.

Article  CAS  Google Scholar 

Kahangi MG, Rashidi AM, Samipoorgiri M. Adsorption methodology: synthesis of Nano-structured nitrogen-doped porous carbon adsorbents for perchloroethylene vapor adsorption. Anal Method Environ Chem J. 2020;3(4):30–9.

Article  CAS  Google Scholar 

Teimoori S, Shirkhanloo H, Hassani AH, Panahi M, Mansouri N. An immobilization of aminopropyl trimethoxysilane-phenanthrene carbaldehyde on graphene oxide for toluene extraction and separation in water samples. Chemosphere. 2023;316:137800.

Article  CAS  PubMed  Google Scholar 

Qi J, Zhao B, Wang Y, Wu Y, Xu Z, Hou Z, Yan J. Photocatalytic degradation kinetics of unsymmetrical dimethylhydrazine in aqueous solution by Fe3+ doped Bi2O3. IOP Conf Ser Mater Sci Eng. 2019;479:012034.

Article  CAS  Google Scholar 

Beigi AAM, Shamsipur M. Biochemistry method: Simultaneous determination of formaldehyde and methyl tert-buthyl ether in environmental and human biological matrices using static headspace gas chromatography mass spectrometry. Anal Method Environ Chem J. 2019;2(1):33–42.

Article  CAS  Google Scholar 

Javan S, Rezaei Kahkha MR, Moghaddam F, Faghihi-Zarandi M, Hejazi A. Photocatalytic degradation of methyl orange using Cerium doped zinc oxide nanoparticles supported bentonite clay. Anal Method Environ Chem J. 2022;5(4):87–95.

Article  CAS  Google Scholar 

Mirzahosseini A. Environmental health analysis: assessing the emission levels of benzene from the fuel tanks doors of the vehicles in Tehran city. Anal Method Environ Chem J. 2019;2(1):49–54.

Article  Google Scholar 

Stanley IC, Njoku VO, Arinze C, Chizoruo IF, Blessing EN. A review: effects of air, water and land dumpsite on human health and analytical methods for determination of pollutants. Anal Method Environ Chem J. 2021;4(3):80–106.

Article  Google Scholar 

Zolfonoun E. Spectrofluorometric determination of L-tryptophan after preconcentration using multi-walled carbon nanotubes. Anal Method Environ Chem J. 2019;2(1):43–8.

Article  CAS  Google Scholar 

Ibrahim AJ. ZnO nanostructure synthesis for the photocatalytic degradation of azo dye methyl orange from aqueous solutions utilizing activated carbon. Anal Method Environ Chem J. 2022;5(4):5–19.

Article  Google Scholar 

Vahid A, Abdous M, Nayyeri S. Investigation of adsorption of cobalt-phthalocyanine from aqueous waste stream using UVM-7/Ag. Anal Method Environ Chem J. 2018;1(1):29–38.

Article  Google Scholar 

Un-Nisa Khilji M, Nahyoon NA, Mehdi M, Thebo KH, Mahar N, Memon AA, Memon N, Hussain N. Synthesis of novel visible light driven MgO@GO nanocomposite photocatalyst for degradation of Rhodamine 6G. Optic Mater. 2023;135: 113260.

Article  Google Scholar 

Nahyoon NA, Liu L, Rabe K, Thebo KH, Yuan L, Sun J, Yang F. Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate. Electrochim Acta. 2018;271:41–8.

Article  CAS  Google Scholar 

Iqbal M, Nahyoon A, Majeed NA, Pothu R, Phulpoto S, Thebo KH. Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Mater Sci Energ Technol. 2019;2(1):41–5.

Article  Google Scholar 

Iqbal M, Thebo AA, Shah AH, Azhar Iqbal A, Thebo KH, Phulpoto S, Muhammad MA. Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorg Chem Commun. 2017;76:71–6.

Article  CAS  Google Scholar 

Iqbal M, Ibrar A, Ali A, Rehman F, Jatoi AH, Jatoi WB, Nawaz Phulpoto S, Hussain TK. Facile synthesis of Zn-doped CdS nanowires with efficient photocatalytic performance. Environ Technol. 2022;43(12):1783–90.

Article  CAS  PubMed  Google Scholar 

Thebo KH, Qian X, Wei Q, Zhang Q, Cheng HM, Ren W. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. J Mater Sci Technol. 2018;34(9):1481–6.

留言 (0)

沒有登入
gif