Anderson, V., Spencer-Smith, M. & Wood, A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 134, 2197–2221 (2011).
Duker, A., Jackson, A. & Bober, M. B. in GeneReviews (eds. Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK575926/ (Univ. Washington, 2021).
Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).
Article CAS PubMed PubMed Central Google Scholar
Miller, D. J., Bhaduri, A., Sestan, N. & Kriegstein, A. Shared and derived features of cellular diversity in the human cerebral cortex. Curr. Opin. Neurobiol. 56, 117–124 (2019).
Article CAS PubMed PubMed Central Google Scholar
Espinós, A., Fernández-Ortuño, E., Negri, E. & Borrell, V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev. Neurobiol. 82, 428–453 (2022).
Article PubMed PubMed Central Google Scholar
Vaid, S. & Huttner, W. B. Progenitor-based cell biological aspects of neocortex development and evolution. Front. Cell Dev. Biol. 10, 892922 (2022).
Article PubMed PubMed Central Google Scholar
Libé-Philippot, B. & Vanderhaeghen, P. Cellular and molecular mechanisms linking human cortical development and evolution. Annu. Rev. Genet. 55, 555–581 (2021).
Koo, B., Lee, K. H., Ming, G. L., Yoon, K. J. & Song, H. Setting the clock of neural progenitor cells during mammalian corticogenesis. Semin. Cell Dev. Biol. 142, 43–53 (2022).
Kuzawa, C. W. et al. Metabolic costs and evolutionary implications of human brain development. Proc. Natl Acad. Sci. USA 111, 13010–13015 (2014).
Article CAS PubMed PubMed Central Google Scholar
Gould, S. J. Ontogeny and Phylogeny (Harvard Univ. Press, 1977).
Otis, E. M. & Brent, R. Equivalent ages in mouse and human embryos. Anat. Rec. 120, 33–63 (1954).
Article CAS PubMed Google Scholar
Van den Ameele, J., Tiberi, L., Vanderhaeghen, P. & Espuny-Camacho, I. Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci. 37, 334–342 (2014).
Ueda, S. et al. Sequence of molecular events during the maturation of the developing mouse prefrontal cortex. Mol. Neuropsychiatry 1, 94–104 (2015).
PubMed PubMed Central Google Scholar
Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012). Quantification of myelination across human and chimpanzee development reveals dramatically delayed and prolonged myelination in humans from infancy to adulthood.
Article CAS PubMed PubMed Central Google Scholar
Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).
Article CAS PubMed PubMed Central Google Scholar
Thompson, J. L. & Nelson, A. J. Middle childhood and modern human origins. Hum. Nat. 22, 249–280 (2011).
Davignon, R. W., Parker, R. M. & Hendrickx, A. G. Staging of the early embryonic brain in the baboon (Papio cynocephalus) and rhesus monkey (Macaca mulatta). Anat. Embryol. 159, 317–334 (1980).
O’Rahilly, R. & Müller, F. Developmental Stages in Human Embryos: Including a Revision of Streeter’s ‘Horizons’ and a Survey of the Carnegie Collection (Carnegie Institution of Washington, 1987).
Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018). This RNA-seq atlas of primate brain development shows that divergence in gene expression between human and rhesus macaque is highest in the midfetal and adolescence periods and prominently involves synaptic and myelination genes.
Article CAS PubMed PubMed Central Google Scholar
Yuan, Y. et al. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series. BMC Bioinform. 12, 347 (2011).
Khrameeva, E. et al. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Res. 30, 776–789 (2020).
Article CAS PubMed PubMed Central Google Scholar
Herring, C. A. et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185, 4428–4447.e28 (2022). Single-cell transcriptomics atlas that profiles the entire period of human cortical development, from gestation to adulthood, shows cell-type-specific maturation patterns.
Article CAS PubMed Google Scholar
Cheng, S. et al. Vision-dependent specification of cell types and function in the developing cortex. Cell 185, 311–327.e24 (2022). This mouse study provides a mechanistic example of the role of interactions between cell-extrinsic factors (vision-evoked activity) and cell-intrinsic factors (gene expression) in promoting cell-type-specific maturation.
Article CAS PubMed PubMed Central Google Scholar
Cossart, R. The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function. Curr. Opin. Neurobiol. 21, 160–168 (2011).
Article CAS PubMed Google Scholar
Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013).
Article CAS PubMed PubMed Central Google Scholar
Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).
Article CAS PubMed PubMed Central Google Scholar
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
Article CAS PubMed PubMed Central Google Scholar
Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).
Article CAS PubMed PubMed Central Google Scholar
Schmitz, M. T. et al. The development and evolution of inhibitory neurons in primate cerebrum. Nature 603, 871–877 (2022).
Article CAS PubMed PubMed Central Google Scholar
Suresh, H. et al. Comparative single-cell transcriptomic analysis of primate brains highlights human-specific regulatory evolution. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-02186-7 (2023).
Article PubMed PubMed Central Google Scholar
Beaulieu-Laroche, L. et al. Allometric rules for mammalian cortical layer 5 neuron biophysics. Nature 600, 274–278 (2021).
Article CAS PubMed Google Scholar
Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kalmbach, B. E. et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron 109, 2914–2927.e5 (2021).
Article CAS PubMed PubMed Central Google Scholar
Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012).
Article CAS PubMed Google Scholar
Barry, C. et al. Species-specific developmental timing is maintained by pluripotent stem cells ex utero. Dev. Biol. 423, 101–110 (2017).
Article CAS PubMed PubMed Central Google Scholar
Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).
Article CAS PubMed Google Scholar
Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986 (2019). HPSC-CExNs transplanted into the mouse cortex exhibit slower development of morphological and electrophysiological properties than their mouse counterparts.
Article CAS PubMed PubMed Central Google Scholar
Marchetto, M. C. et al. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. eLife 8, e37527 (2019).
Comments (0)