Human neuronal maturation comes of age: cellular mechanisms and species differences

Anderson, V., Spencer-Smith, M. & Wood, A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 134, 2197–2221 (2011).

Article  PubMed  Google Scholar 

Duker, A., Jackson, A. & Bober, M. B. in GeneReviews (eds. Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK575926/ (Univ. Washington, 2021).

Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, D. J., Bhaduri, A., Sestan, N. & Kriegstein, A. Shared and derived features of cellular diversity in the human cerebral cortex. Curr. Opin. Neurobiol. 56, 117–124 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Espinós, A., Fernández-Ortuño, E., Negri, E. & Borrell, V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev. Neurobiol. 82, 428–453 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Vaid, S. & Huttner, W. B. Progenitor-based cell biological aspects of neocortex development and evolution. Front. Cell Dev. Biol. 10, 892922 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Libé-Philippot, B. & Vanderhaeghen, P. Cellular and molecular mechanisms linking human cortical development and evolution. Annu. Rev. Genet. 55, 555–581 (2021).

Article  PubMed  Google Scholar 

Koo, B., Lee, K. H., Ming, G. L., Yoon, K. J. & Song, H. Setting the clock of neural progenitor cells during mammalian corticogenesis. Semin. Cell Dev. Biol. 142, 43–53 (2022).

Article  PubMed  Google Scholar 

Kuzawa, C. W. et al. Metabolic costs and evolutionary implications of human brain development. Proc. Natl Acad. Sci. USA 111, 13010–13015 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gould, S. J. Ontogeny and Phylogeny (Harvard Univ. Press, 1977).

Otis, E. M. & Brent, R. Equivalent ages in mouse and human embryos. Anat. Rec. 120, 33–63 (1954).

Article  CAS  PubMed  Google Scholar 

Van den Ameele, J., Tiberi, L., Vanderhaeghen, P. & Espuny-Camacho, I. Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci. 37, 334–342 (2014).

Article  PubMed  Google Scholar 

Ueda, S. et al. Sequence of molecular events during the maturation of the developing mouse prefrontal cortex. Mol. Neuropsychiatry 1, 94–104 (2015).

PubMed  PubMed Central  Google Scholar 

Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012). Quantification of myelination across human and chimpanzee development reveals dramatically delayed and prolonged myelination in humans from infancy to adulthood.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson, J. L. & Nelson, A. J. Middle childhood and modern human origins. Hum. Nat. 22, 249–280 (2011).

Article  PubMed  Google Scholar 

Davignon, R. W., Parker, R. M. & Hendrickx, A. G. Staging of the early embryonic brain in the baboon (Papio cynocephalus) and rhesus monkey (Macaca mulatta). Anat. Embryol. 159, 317–334 (1980).

Article  CAS  Google Scholar 

O’Rahilly, R. & Müller, F. Developmental Stages in Human Embryos: Including a Revision of Streeter’s ‘Horizons’ and a Survey of the Carnegie Collection (Carnegie Institution of Washington, 1987).

Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018). This RNA-seq atlas of primate brain development shows that divergence in gene expression between human and rhesus macaque is highest in the midfetal and adolescence periods and prominently involves synaptic and myelination genes.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, Y. et al. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series. BMC Bioinform. 12, 347 (2011).

Article  Google Scholar 

Khrameeva, E. et al. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Res. 30, 776–789 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herring, C. A. et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185, 4428–4447.e28 (2022). Single-cell transcriptomics atlas that profiles the entire period of human cortical development, from gestation to adulthood, shows cell-type-specific maturation patterns.

Article  CAS  PubMed  Google Scholar 

Cheng, S. et al. Vision-dependent specification of cell types and function in the developing cortex. Cell 185, 311–327.e24 (2022). This mouse study provides a mechanistic example of the role of interactions between cell-extrinsic factors (vision-evoked activity) and cell-intrinsic factors (gene expression) in promoting cell-type-specific maturation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cossart, R. The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function. Curr. Opin. Neurobiol. 21, 160–168 (2011).

Article  CAS  PubMed  Google Scholar 

Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitz, M. T. et al. The development and evolution of inhibitory neurons in primate cerebrum. Nature 603, 871–877 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suresh, H. et al. Comparative single-cell transcriptomic analysis of primate brains highlights human-specific regulatory evolution. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-02186-7 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Beaulieu-Laroche, L. et al. Allometric rules for mammalian cortical layer 5 neuron biophysics. Nature 600, 274–278 (2021).

Article  CAS  PubMed  Google Scholar 

Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalmbach, B. E. et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron 109, 2914–2927.e5 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012).

Article  CAS  PubMed  Google Scholar 

Barry, C. et al. Species-specific developmental timing is maintained by pluripotent stem cells ex utero. Dev. Biol. 423, 101–110 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).

Article  CAS  PubMed  Google Scholar 

Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986 (2019). HPSC-CExNs transplanted into the mouse cortex exhibit slower development of morphological and electrophysiological properties than their mouse counterparts.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marchetto, M. C. et al. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. eLife 8, e37527 (2019).

Comments (0)

No login
gif