Modulation of 3D Bioprintability in Polysaccharide Bioink by Bioglass Nanoparticles and Multiple Metal Ions for Tissue Engineering

Janarthanan G, Noh I. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications. J Mater Sci Technol. 2021;63:35–53.

Article  CAS  Google Scholar 

Gopinathan J, Noh I. Click chemistry-based injectable hydrogels and bioprinting inks for tissue engineering applications. Tissue Eng Regen Med. 2018;15:531–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym. 2022;283:119161.

Article  CAS  PubMed  Google Scholar 

Nie J, Wang Z, Hu Q. Chitosan Hydrogel structure modulated by metal ions. Sci Rep. 2016;6:36005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raia NR, Partlow BP, McGill M, Kimmerling EP, Ghezzi CE, Kaplan DL. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials. 2017;131:58–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khanmohammadi M, Jalessi M, Asghari A. Biomimetic hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering. BMC Res Notes. 2022;15:174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

López-Marcial GR, Zeng AY, Osuna C, Dennis J, García JM, O'Connell GD. Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomater Sci Eng. 2018;4:3610–6.

Article  PubMed  Google Scholar 

Hatton J, Davis GR, Mourad AI, Cherupurakal N, Hill RG, Mohsin S. Fabrication of porous bone scaffolds using alginate and bioactive glass. J Funct Biomater. 2019;10:15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu C, Zhang Z, Zhou K, Chen W, Tao J, Li C, et al. Preparation and characterization of borosilicate-bioglass-incorporated sodium alginate composite wound dressing for accelerated full-thickness skin wound healing. Biomed Mater. 2020;15:055009.

Article  CAS  PubMed  Google Scholar 

Bargavi P, Ramya R, Chitra S, Vijayakumari S, Riju Chandran R, Durgalakshmi D, et al. Bioactive, degradable and multi-functional three-dimensional membranous scaffolds of bioglass and alginate composites for tissue regenerative applications. Biomater Sci. 2020;8:4003–25.

Article  CAS  PubMed  Google Scholar 

Zamani D, Moztarzadeh F, Bizari D. Alginate-bioactive glass containing zn and mg composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2019;137:1256–67.

Article  CAS  PubMed  Google Scholar 

Thomas A, Johnson E, Agrawal AK, Bera J. Preparation and characterization of glass–ceramic reinforced alginate scaffolds for bone tissue engineering. J Mater Res. 2019;34:3798–809.

Article  CAS  Google Scholar 

El-Kady AM, Ali AA, El-Fiqi A. Controlled delivery of therapeutic ions and antibiotic drug of novel alginate-agarose matrix incorporating selenium-modified borosilicate glass designed for chronic wound healing. J Non Cryst Solids. 2020;534:119889.

Article  CAS  Google Scholar 

Gao L, Zhou Y, Peng J, Xu C, Xu Q, Xing M, et al. A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing. NPG Asia Mater. 2019;11:16.

Article  Google Scholar 

Qi Q, Zhu Y, Liu G, Yuan Z, Li H, Zhao Q. Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomed Pharmacother. 2020;129:110382.

Article  CAS  PubMed  Google Scholar 

Massana Roquero D, Othman A, Melman A, Katz E. Iron(iii)-cross-linked alginate hydrogels: a critical review. Mater Adv. 2022;3:1849–73.

Article  CAS  Google Scholar 

Zeng Q, Han Y, Li H, Chang J. Design of a thermosensitive bioglass/agarose-alginate composite hydrogel for chronic wound healing. J Mater Chem B. 2015;3:8856–64.

Article  CAS  PubMed  Google Scholar 

Falah SNM, Al-Fartusie S. Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci. 2017;5:127–36.

Google Scholar 

Dravid A, McCaughey-Chapman A, Raos B, O’Carroll SJ, Connor B, Svirskis D. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Biomed Mater. 2022. https://doi.org/10.1088/1748-605X/ac759f.

Article  PubMed  Google Scholar 

Oliver-Ferrándiz M, Milián L, Sancho-Tello M, Martín de Llano JJ, Gisbert Roca F, Martínez-Ramos C, et al. Alginate-agarose hydrogels improve the in vitro differentiation of human dental pulp stem cells in chondrocytes. A histological study. Biomedicines. 2021;9:834.

Cañaveral S, Morales D, Vargas AF. Synthesis and characterization of a 58S bioglass modified with manganese by a sol-gel route. Mater Lett. 2019;255:126575.

Article  Google Scholar 

da Fonseca GF, Avelino SOM, Mello DCR, do Prado RF, Campos TMB, de Vasconcellos LMR, et al. Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance. J Mater Sci Mater Med. 2020;31:41.

Article  PubMed  Google Scholar 

Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J. 2010;158:353–61.

Article  CAS  Google Scholar 

Xia D, Wang Y, Wu R, Zheng Q, Zhang G, Xu S, et al. The effect of pore size on cell behavior in mesoporous bioglass scaffolds for bone regeneration. Appl Mater Today. 2022;29:101607.

Article  Google Scholar 

Zeng Q, Han Y, Li H, Chang J. Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. J Biomed Mater Res B Appl Biomater. 2014;102:42–51.

Article  PubMed  Google Scholar 

Wers E, Lefeuvre B. New hybrid agarose/Cu-Bioglass® biomaterials for antibacterial coatings. Korean J Chem Eng. 2017;34:2241–7.

Article  CAS  Google Scholar 

Bhattacharyya A, Ham HW, Sonh J, Gunbayar M, Jeffy R, Nagarajan R, et al. 3D bioprinting of complex tissue scaffolds with in situ homogeneously mixed alginate-chitosan-kaolin bioink using advanced portable biopen. Carbohydr Polym. 2023;317:121046.

Article  Google Scholar 

Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. Addit Manuf. 2021;37:101639.

CAS  Google Scholar 

Bhattacharyya A, Priya VNK, Kim JH, Khatun MR, Nagarajan R, Noh I. Nanodiamond enhanced mechanical and biological properties of extrudable gelatin hydrogel cross-linked with tannic acid and ferrous sulphate. Biomater Res. 2022;26:37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khatun MR, Bhattacharyya A, Taheri S, Ham Hw, Kim H, Chang SH, et al. High molecular weight fucoidan loading into and release from hyaluronate-based prefabricated hydrogel and its nanogel particles controlled by variable pitch and differential extensional shear technology of advanced twin screw‐based system. Adv Mater Technol. 2022;8:2201478.

Article  Google Scholar 

Lee J, Kim KE, Bang S, Noh I, Lee C. A desktop multi-material 3D bio-printing system with open-source hardware and software. Int J Precis Eng Manuf. 2017;18:605–12.

Article  Google Scholar 

Pillai MM, Tran HN, Sathishkumar G, Manimekalai K, Yoon J, Lim D, et al. Symbiotic culture of nanocellulose pellicle: a potential matrix for 3D bioprinting. Mater Sci Eng C Mater Biol Appl. 2021;119:111552.

Article  CAS  PubMed  Google Scholar 

Janarthanan G, Lee S, Noh I. 3D Printing of bioinspired alginate-albumin based instant gel ink with electroconductivity and its expansion to direct four‐axis printing of hollow porous tubular constructs without supporting materials. Adv Funct Mater. 2021;31:2104441.

Article  CAS  Google Scholar 

Das D, Pham TTH, Noh I. Characterizations of hyaluronate-based terpolymeric hydrogel synthesized via free radical polymerization mechanism for biomedical applications. Colloids Surf B Biointerfaces. 2018;170:64–75.

Article  CAS  PubMed  Google Scholar 

Bui X, Dang T. Bioactive glass 58S prepared using an innovation sol-gel process. Process Appl Ceram. 2019;13:98–103.

Article  CAS  Google Scholar 

Madsen IC, Scarlett NVY, Kern A. Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Z Kristallogr. 2011;226:944–55.

Article  CAS  Google Scholar 

Bhattacharyya A, Janarthanan G, Kim T, Taheri S, Shin J, Kim J, et al. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering. Biomater Res. 2022;26:54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, et al. Agarose-based biomaterials for tissue engineering. Carbohydr Polym. 2018;187:66–84.

Article  CAS  PubMed  Google Scholar 

Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25:3211–22.

Article  CAS  PubMed  Google Scholar 

Killion JA, Kehoe S, Geever LM, Devine DM, Sheehan E, Boyd D, et al. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater Sci Eng C Mater Biol Appl. 2013;33:4203–12.

Article 

留言 (0)

沒有登入
gif