Comparative transcriptome analysis of two contrasting genotypes provides new insights into the drought response mechanism in pigeon pea (Cajanus cajan L. Millsp.)

Abdel-Ghany SE, Ullah F, Ben-Hur A, Reddy ASN (2020) Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to peg-induced drought stress. Int J Mol Sci. https://doi.org/10.3390/ijms21030772

Article  PubMed  PubMed Central  Google Scholar 

Abdullah M, Cheng X, Cao Y, Su X, Manzoor MA, Gao J et al (2018) Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): genome-wide identification and expression analysis in fiber development. Front Genet. https://doi.org/10.3389/fgene.2018.00357

Article  PubMed  PubMed Central  Google Scholar 

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78. https://doi.org/10.1105/tpc.006130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abid G, Saidi MN, Ouertani RN, Muhovski Y, Jebara SH, Ghouili E et al (2021) Differential gene expression reveals candidate genes for osmotic stress response in faba bean (Vicia faba L.) involved in different molecular pathways. Acta Physiol Plant 43:1–20

Article  Google Scholar 

Abid G, Hessini K, Aouida M, Aroua I, Baudoin J-P, Muhovski Y, et al (2017) Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ’minor’) genotypes to water deficit stress. Biotechnol Agron Société Environ https://doi.org/10.25518/1780-4507.13579

Article  Google Scholar 

Ahmadizadeh M, Shahbazi H, Valizadeh M, Zaefizadeh M (2011a) Genetic diversity of durum wheat landraces using multivariate analysis under normal irrigation and drought stress conditions. African J Agric Res 6:2294–2302

Google Scholar 

Ahmadizadeh M, Valizadeh M, Zaefizadeh M, Shahbazi H (2011b) Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. J Appl Sci Res 7(3):236–246

CAS  Google Scholar 

Ahmed IM, Nadira UA, Bibi N, Cao F, He X, Zhang G et al (2015) Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ Exp Bot 111:1–12

Article  CAS  Google Scholar 

Ali S, Hayat K, Iqbal A, Xie L (2020) Implications of abscisic acid in the drought stress tolerance of plants. Agronomy. https://doi.org/10.3390/agronomy10091323

Article  Google Scholar 

Andrews S (2010) FastQC: a quality control tool for high throughput sequence data

Araújo SS, Beebe S, Crespi M, Delbreil B, González EM, Gruber V et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. CRC Crit Rev Plant Sci 34:237–280. https://doi.org/10.1080/07352689.2014.898450

Article  CAS  Google Scholar 

Arisha MH, Ahmad MQ, Tang W, Liu Y, Yan H, Kou M et al (2020) RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato. Sci Rep 10:1–17

Article  Google Scholar 

Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

Article  CAS  PubMed  Google Scholar 

Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Article  CAS  Google Scholar 

Bargmann BOR, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522. https://doi.org/10.1016/j.pbi.2006.07.011

Article  CAS  PubMed  Google Scholar 

Barth O, Vogt S, Uhlemann R, Zschiesche W, Humbeck K (2009) Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol 69:213–226. https://doi.org/10.1007/s11103-008-9419-0

Article  CAS  PubMed  Google Scholar 

Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research 5:1–10. https://doi.org/10.12688/F1000RESEARCH.7678.1

Article  Google Scholar 

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

Article  CAS  Google Scholar 

Ben Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475. https://doi.org/10.3390/plants3040458

Article  PubMed Central  Google Scholar 

Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679. https://doi.org/10.1093/jxb/err450

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bewley JD (1979) Physiological aspects of desiccation tolerance. Available at: www.annualreviews.org

Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N (2020) Comparative root transcriptomics provide insights into drought adaptation strategies in chickpea (Cicer arietinum L.). Int J Mol Sci. https://doi.org/10.3390/ijms21051781

Article  PubMed  PubMed Central  Google Scholar 

Bi H, Kovalchuk N, Langridge P, Tricker PJ, Lopato S, Borisjuk N (2017) The impact of drought on wheat leaf cuticle properties. BMC Plant Biol 17:85. https://doi.org/10.1186/s12870-017-1033-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97. https://doi.org/10.1016/0167-7799(96)80929-2

Article  CAS  Google Scholar 

Bohra A, Mir RR, Jha R, Maurya AK, Varshney RK (2020) Advances in genomics and molecular breeding for legume improvement. In: Advancement in crop improvement. Elsevier, pp 129–139. https://doi.org/10.1016/b978-0-12-818581-0.00009-7

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai K, Gao H, Wu X, Zhang S, Han Z, Chen X et al (2019) The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley. Int J Mol Sci 20:4111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catola S, Marino G, Emiliani G, Huseynova T, Musayev M, Akparov Z et al (2016) Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta 243:441–449. https://doi.org/10.1007/s00425-015-2414-1

Article  CAS  PubMed  Google Scholar 

Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384. https://doi.org/10.1093/jxb/erh269

Article  CAS  PubMed  Google Scholar 

Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

Article  CAS  PubMed  Google Scholar 

Chen Y, Chen Y, Shi Z, Jin Y, Sun H, Xie F et al (2019a) Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky bluegrass. Int J Mol Sci 20:1289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C et al (2019b) The role of the Late Embryogenesis-Abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum tuberosum). Genes (basel). https://doi.org/10.3390/genes10020148

Article  PubMed  PubMed Central  Google Scholar 

Choudhary AK, Nadarajan N, Choudhary AK, Nadarajan N (2011) Breeding improved cultivars of Pigeonpea in India. Available at: https://www.researchgate.net/publication/309136303.

Collin A, Daszkowska-Golec A, Kurowska M, Szarejko I (2020) Barley ABI5 (abscisic acid INSENSITIVE 5) is involved in abscisic acid-dependent drought response. Plant Sci Front. https://doi.org/10.3389/fpls.2020.01138

Article  Google Scholar 

Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI et al (2008) Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol 165:886–894. https://doi.org/10.1016/j.jplph.2007.06.010

Article  CAS  PubMed  Google Scholar 

Dai Y, Sun X, Wang C, Li F, Zhang S, Zhang H et al (2021) Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage (Brassica rapa L.) during vernalization. Genomics. https://doi.org/10.1186/s12864-021-07510-8

Article  PubMed  PubMed Central  Google Scholar 

Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

Article  Google Scholar 

Davey MW, Stals E, Panis B, Keulemans J, Swennen RL (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347:201–207. https://doi.org/10.1016/j.ab.2005.09.041

Article  CAS  PubMed  Google Scholar 

de Zelicourt A, Colcombet J, Hirt H (2016) The Role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685. https://doi.org/10.1016/j.tplants.2016.04.004

Article  CAS  PubMed  Google Scholar 

Deeplanaik N, Kumaran RC, Venkatarangaiah K, Shivashankar SKH, Doddamani D, Telkar S (2013) Expression of drought responsive genes in pigeonpea and in silico comparison with soybean cDNA library. J Crop Sci Biotechnol 16:243–251. https://doi.org/10.1007/s12892-013-0069-7

Article 

留言 (0)

沒有登入
gif