Mechanical properties of simulated dentin caries treated with metal cations and l-ascorbic acid 2-phosphate

Tjäderhane L, Carrilho MR, Breschi L, et al. Dentin basic structure and composition—an overview. Endod Topics. 2009;20(1):3–29.

Article  Google Scholar 

Goldberg M, Kulkarni AB, Young M, et al. Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed). 2011;3:711.

Article  PubMed  Google Scholar 

Purk JH. 8 - Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction. In: Spencer P, Misra A, editors. Material-tissue interfacial phenomena. Woodhead Publishing; 2017. p. 205–29.

Chapter  Google Scholar 

Lester K. Some preliminary observations in caries (“ remineralization”) crystals in enamel and dentine by surface electron microscopy. Virchows Arch Abt A Path Anat. 1968;344:196–212.

Article  Google Scholar 

Kassebaum N, Bernabé E, Dahiya M, Bhandari B, Murray C, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–8.

Article  PubMed  Google Scholar 

Nakajima M, Kunawarote S, Prasansuttiporn T, Tagami J. Bonding to caries-affected dentin. Japan Dent Sci Rev. 2011;47(2):102–14. https://doi.org/10.1016/j.jdsr.2011.03.002.

Article  Google Scholar 

Buzalaf MA, Hannas AR, Magalhães AC, Rios D, Honório HM, Delbem AC. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. J Appl Oral Sci. 2010;18(4):316–34. https://doi.org/10.1590/s1678-77572010000400002.

Article  PubMed  PubMed Central  Google Scholar 

Bjørndal L, Laustsen MH, Reit C. Root canal treatment in Denmark is most often carried out in carious vital molar teeth and retreatments are rare. Int Endod J. 2006;39(10):785–90. https://doi.org/10.1111/j.1365-2591.2006.01149.x.

Article  PubMed  Google Scholar 

Spencer P, Wang Y, Katz JL, Misra A. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J Biomed Opt. 2005;10(3):031104–11.

Article  PubMed  Google Scholar 

Tjäderhane L, Hietala E-L, Larmas M. Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. J Dent Res. 1995;74(11):1770–4.

Article  PubMed  Google Scholar 

Zheng L, Nakajima M, Higashi T, Foxton RM, Tagami J. Hardness and Young’s modulus of transparent dentin associated with aging and carious disease. Dent Mater J. 2005;24(4):648–53.

Article  PubMed  Google Scholar 

Yoshiyama M, Tay F, Doi J, Nishitani Y, Yamada T, Itou K, et al. Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res. 2002;81(8):556–60.

Article  PubMed  Google Scholar 

Zheng L, Hilton JF, Habelitz S, Marshall SJ, Marshall GW. Dentin caries activity status related to hardness and elasticity. Eur J Oral Sci. 2003;111(3):243–52.

Article  PubMed  Google Scholar 

Erhardt MCG, Toledano M, Osorio R, Pimenta LA. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater. 2008;24(6):786–98.

Article  PubMed  Google Scholar 

Wang Y, Spencer P, Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res Part A: Off J Soci Biomater, Japan Soc Biomater, Aust Soc Biomater Korean Soc Biomater. 2007;81(2):279–86.

Article  Google Scholar 

Perdigão J. Dentin bonding—variables related to the clinical situation and the substrate treatment. Dent Mater. 2010;26(2):e24–37. https://doi.org/10.1016/j.dental.2009.11.149.

Article  PubMed  Google Scholar 

Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue—part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol. 2022;71:126932.

Article  PubMed  Google Scholar 

Saghiri MA, Vakhnovetsky J, Vakhnovetsky A. Functional role of inorganic trace elements in dentin apatite—part ii: copper, manganese, silicon, and lithium. J Trace Elem Med Biol. 2022. https://doi.org/10.1016/j.jtemb.2022.126995.

Article  PubMed  Google Scholar 

Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue-part III: Se, F, Ag, and B. J Trace Elem Med Biol. 2022;72:126990. https://doi.org/10.1016/j.jtemb.2022.126990.

Article  PubMed  Google Scholar 

Zheng K, Song W, Sun A, Chen X, Liu J, Luo Q, et al. Enzymatic production of ascorbic acid-2-phosphate by recombinant acid phosphatase. J Agric Food Chem. 2017;65(20):4161–6. https://doi.org/10.1021/acs.jafc.7b00612.

Article  PubMed  Google Scholar 

Song W, Zheng K, Xu X, Gao C, Guo L, Liu J, et al. Enzymatic production of ascorbic acid-2-phosphate by engineered pseudomonas aeruginosa acid phosphatase. J Agric Food Chem. 2021;69(47):14215–21. https://doi.org/10.1021/acs.jafc.1c04685.

Article  PubMed  Google Scholar 

Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B. 2021;9(33):6691–702.

Article  PubMed  Google Scholar 

Zdanowicz JA, Featherstone JD, Espeland MA, Curzon ME. Inhibitory effect of barium on human caries prevalence. Commun Dent Oral Epidemiol. 1987;15(1):6–9.

Article  Google Scholar 

Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5(8):3141–9.

Article  PubMed  Google Scholar 

Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30(15):2864–72.

Article  PubMed  Google Scholar 

Jayasree R, Kumar T, Mahalaxmi S, Abburi S, Rubaiya Y, Doble M. Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. J Mater Sci - Mater Med. 2017;28(6):1–12.

Article  Google Scholar 

Jelaca-Tavakoli M, Gerlach RF, Djuric M. Manganese (Mn) in human teeth. FASEB J. 2016;30:778–83.

Google Scholar 

Oliveira PH, Santana LAB, Ferreira NS, Sharifi-Asl S, Shokuhfar T, Shahbazian-Yassar R, et al. Manganese behavior in hydroxyapatite crystals revealed by X-ray difference Fourier maps. Ceram Int. 2020;46(8P):10585–97. https://doi.org/10.1016/j.ceramint.2020.01.062.

Article  Google Scholar 

Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, et al. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem. 2003;2003(7):1445–51.

Article  Google Scholar 

Ghosh ANB, Kumar V, Nayan K. Role of minerals and trace elements in oral health - a review. J Oral Dent Health. 2016;2:1–2.

Google Scholar 

Pereira P, Inokoshi S, Yamada T, Tagami J. Microhardness of in vitro caries inhibition zone adjacent to conventional and resin-modified glass ionomer cements. Dent Mater. 1998;14(3):179–85.

Article  PubMed  Google Scholar 

Marquezan M, Corrêa FNP, Sanabe ME, Rodrigues Filho LE, Hebling J, Guedes-Pinto AC, et al. Artificial methods of dentine caries induction: a hardness and morphological comparative study. Arch Oral Biol. 2009;54(12):1111–7. https://doi.org/10.1016/j.archoralbio.2009.09.007.

Article  PubMed  Google Scholar 

Williams PD, Smith DC. Measurement of the tensile strength of dental restorative materials by use of a diametral compression test. J Dent Res. 1971;50(2):436–42. https://doi.org/10.1177/00220345710500025401.

Article  PubMed  Google Scholar 

Ban S, Anusavice K. Influence of test method on failure stress of brittle dental materials. J Dent Res. 1990;69(12):1791–9.

Article  PubMed  Google Scholar 

Davari A, Kazemi AD, Mousavinasab M, Yassaei S, Alavi A. Evaluation the compressive and diametric tensile strength of nano and hybrid composites. Dent Res J (Isfahan). 2012;9(6):827–8.

PubMed  Google Scholar 

Talal A, Hamid SK, Khan M, et al. Structure of biological apatite: bone and tooth. In: Khan AS, Chaudhry AA, editors., et al., Handbook of ionic substituted hydroxyapatites. Cambridge: Woodhead Publishing; 2020. p. 1–19.

Google Scholar 

Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108(11):4754–83.

Article  PubMed  PubMed Central  Google Scholar 

Tite T, Popa A-C, Balescu LM, Bogdan IM, Pasuk I, Ferreira JM, et al. Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials. 2018;11(11):2081.

Article  PubMed  PubMed Central  Google Scholar 

Kay MI, Young R, Posner A. Crystal structure of hydroxyapatite. Nature. 1964;204(4963):1050–2.

Article  PubMed  Google Scholar 

Elliott J. Hydroxyapatite and nonstoichiometric apatites. Structure and chemistry of the apatites and other calcium orthophosphates. 1994;18:111-89

Šupová M. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 2015;41(8):9203–31.

Article  Google Scholar 

Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater. 2017;105(5):1285–99. https://doi.org/10.1002/jbm.b.33651.

Article  PubMed  Google Scholar 

Saghiri MA, Saghiri AM, Samadi E, et al. Neural network approach to evaluate the physical properties of dentin. Odontology. 2023;111(1):68–77. https://doi.org/10.1007/s10266-022-00726-4.

Article  PubMed  Google Scholar 

Saghiri MA, García-Godoy F, Asgar K, Lotfi M. The effect of Morinda Citrifolia juice as an endodontic irrigant on smear layer and microhardness of root canal dentin. Oral Sci Int. 2013;10(2):53–7.

留言 (0)

沒有登入
gif