Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368:1016–20. https://doi.org/10.1126/science.abb7015.
Article CAS PubMed PubMed Central Google Scholar
Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020;35:1123–38. https://doi.org/10.1007/s10654-020-00698-1.
Article CAS PubMed PubMed Central Google Scholar
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472:481–5. https://doi.org/10.1038/nature09907.
Article CAS PubMed PubMed Central Google Scholar
Li X, Hou P, Ma W, Wang X, Wang H, Yu Z, et al. SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy. Cell Mol Immunol. 2022;19:67–78. https://doi.org/10.1038/s41423-021-00807-4.
Article CAS PubMed Google Scholar
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20. https://doi.org/10.1016/j.cell.2010.01.022.
Article CAS PubMed Google Scholar
Rehwinkel J, Reis e Sousa C. RIGorous detection: exposing virus through RNA sensing. Science. 2010;327:284–286. https://doi.org/10.1126/science.1185068.
Article CAS PubMed Google Scholar
Loo Y-M, Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680–92. https://doi.org/10.1016/j.immuni.2011.05.003.
Article CAS PubMed PubMed Central Google Scholar
Jiang F, Ramanathan A, Miller MT, Tang G-Q, Gale M, Patel SS, et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature. 2011;479:423–7. https://doi.org/10.1038/nature10537.
Article CAS PubMed PubMed Central Google Scholar
Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. Structural insights into RNA recognition by RIG-I. Cell. 2011;147:409–22. https://doi.org/10.1016/j.cell.2011.09.023.
Article CAS PubMed PubMed Central Google Scholar
Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, Chen ZJ. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell. 2011;146:448–61. https://doi.org/10.1016/j.cell.2011.06.041.
Article CAS PubMed PubMed Central Google Scholar
Weerawardhana A, Uddin MB, Choi J-H, Pathinayake P, Shin SH, Chathuranga K, et al. Foot-and-mouth disease virus non-structural protein 2B downregulates the RLR signaling pathway via degradation of RIG-I and MDA5. Front Immunol. 2022;13:1020262. https://doi.org/10.3389/fimmu.2022.1020262.
Article CAS PubMed PubMed Central Google Scholar
Gack MU, Albrecht RA, Urano T, Inn K-S, Huang IC, Carnero E, et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 2009;5:439–49. https://doi.org/10.1016/j.chom.2009.04.006.
Article CAS PubMed PubMed Central Google Scholar
Wallach D, Kovalenko A. Phosphorylation and dephosphorylation of the RIG-I-like receptors: a safety latch on a fateful pathway. Immunity. 2013;38:402–3. https://doi.org/10.1016/j.immuni.2013.02.014.
Article CAS PubMed Google Scholar
Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW, et al. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity. 2013;38:437–49. https://doi.org/10.1016/j.immuni.2012.11.018.
Article CAS PubMed PubMed Central Google Scholar
Hu M-M, Liao C-Y, Yang Q, Xie X-Q, Shu H-B. Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5. J Exp Med. 2017;214:973–89. https://doi.org/10.1084/jem.20161015.
Article CAS PubMed PubMed Central Google Scholar
Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem. 2009;284:807–17. https://doi.org/10.1074/jbc.M804259200.
Article CAS PubMed Google Scholar
Kuniyoshi K, Takeuchi O, Pandey S, Satoh T, Iwasaki H, Akira S, et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc Natl Acad Sci USA. 2014;111:5646–51. https://doi.org/10.1073/pnas.1401674111.
Article CAS PubMed PubMed Central Google Scholar
Gao D, Yang Y-K, Wang R-P, Zhou X, Diao F-C, Li M-D, et al. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS ONE. 2009;4:e5760. https://doi.org/10.1371/journal.pone.0005760.
Article CAS PubMed PubMed Central Google Scholar
Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe. 2010;8:496–509. https://doi.org/10.1016/j.chom.2010.11.008.
Article CAS PubMed Google Scholar
Gack MU, Shin YC, Joo C-H, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 2007;446:916–20.
Article CAS PubMed Google Scholar
Yan J, Li Q, Mao A-P, Hu M-M, Shu H-B. TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J Mol Cell Biol. 2014;6:154–63. https://doi.org/10.1093/jmcb/mju005.
Article CAS PubMed Google Scholar
Chen W, Han C, Xie B, Hu X, Yu Q, Shi L, et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell. 2013;152:467–78. https://doi.org/10.1016/j.cell.2013.01.011.
Article CAS PubMed Google Scholar
Zhao K, Zhang Q, Li X, Zhao D, Liu Y, Shen Q, et al. Cytoplasmic STAT4 promotes antiviral type I IFN production by blocking CHIP-mediated degradation of RIG-I. J Immunol. 2016;196:1209–17. https://doi.org/10.4049/jimmunol.1501224.
Article CAS PubMed Google Scholar
Wang W, Jiang M, Liu S, Zhang S, Liu W, Ma Y, et al. RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc Natl Acad Sci USA. 2016;113:9581–6. https://doi.org/10.1073/pnas.1604277113.
Article CAS PubMed PubMed Central Google Scholar
Arimoto K-I, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci USA. 2007;104:7500–5.
Article CAS PubMed PubMed Central Google Scholar
Yang W, Ru Y, Ren J, Bai J, Wei J, Fu S, et al. G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response. Cell Death Dis. 2019;10:946. https://doi.org/10.1038/s41419-019-2178-9.
Article CAS PubMed PubMed Central Google Scholar
Shen Y, Tang K, Chen D, Hong M, Sun F, Wang S, et al. Riok3 inhibits the antiviral immune response by facilitating TRIM40-mediated RIG-I and MDA5 degradation. Cell Rep. 2021;35:109272. https://doi.org/10.1016/j.celrep.2021.109272.
Article CAS PubMed PubMed Central Google Scholar
Yona S, Lin H-H, Siu WO, Gordon S, Stacey M. Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci. 2008;33:491–500. https://doi.org/10.1016/j.tibs.2008.07.005.
Article CAS PubMed Google Scholar
Hsiao C-C, Wang W-C, Kuo W-L, Chen H-Y, Chen T-C, Hamann J, et al. CD97 inhibits cell migration in human fibrosarcoma cells by modulating TIMP-2/MT1- MMP/MMP-2 activity-role of GPS autoproteolysis and functional cooperation between the N- and C-terminal fragments. FEBS J. 2014;281:4878–91. https://doi.org/10.1111/febs.13027.
Article CAS PubMed Google Scholar
Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, van Lier RA. Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur J Immunol. 1998;28:1701–7
Article CAS PubMed Google Scholar
Kwakkenbos MJ, Pouwels W, Matmati M, Stacey M, Lin H-H, Gordon S, et al. Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J Leukoc Biol. 2005;77:112–9
Comments (0)