A Comparative Perspective on the Cerebello-Cerebral System and Its Link to Cognition

Miller EK. The prefrontal cortex and cognitive control. Nat Rev Neurosci. 2000;1:59–65.

PubMed  CAS  Google Scholar 

Frahm HD, Stephan H, Stephan M. Comparison of brain structure volumes in Insectivora and Primates. I Neocortex J Hirnforsch. 1982;23:375–89.

PubMed  CAS  Google Scholar 

Hofman MA. Size and shape of the cerebral cortex in mammals. II. The cortical volume. Brain Behav Evol. 1988;32:17–26.

PubMed  CAS  Google Scholar 

Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies DS. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. 2021;22:503–13.

PubMed  CAS  Google Scholar 

Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

PubMed  Google Scholar 

Xu T, Nenning KH, Schwartz E, Hong SJ, Vogelstein JT, Goulas A, et al. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage. 2020;223:117346.

PubMed  Google Scholar 

Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:12.

Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci U S A. 2012;109:10661–8.

PubMed  PubMed Central  CAS  Google Scholar 

Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41.

PubMed  Google Scholar 

Ishikawa T, Shimuta M, Häuser M. Multimodal sensory integration in single cerebellar granule cells in vivo. eLife. 2015;4:e12916.

Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, et al. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. eLife. 2013;2:e00400.

Luciani L. Das Kleinhirn: neue Studien zur normalen und pathologischen Physiologie. Fraenkel MO, editor. Leipzig: E. Besold; 1893.

Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: The cerebellum’s role in movement and cognition. The Cerebellum. 2014;13:151–77.

PubMed  Google Scholar 

Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80:807–15.

PubMed  CAS  Google Scholar 

Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, et al. Consensus Paper: Cerebellum and social cognition. The Cerebellum. 2020;19:833–68.

PubMed  Google Scholar 

Habas C. Functional connectivity of the cognitive cerebellum. Front Syst Neurosci. 2021;15:642225.

PubMed  PubMed Central  Google Scholar 

Tanaka H, Ishikawa T, Lee J, Kakei S. The Cerebro-Cerebellum as a Locus of Forward Model: A Review. Front Syst Neurosci. 2020;14:19.

Botez MI, Gravel J, Attig E, Vézina JL. Reversible chronic cerebellar ataxia after phenytoin intoxication: possible role of cerebellum in cognitive thought. Neurol. 1985;35:1152–7.

CAS  Google Scholar 

Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

PubMed  Google Scholar 

Leiner H, Leiner A, Dow R. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

PubMed  CAS  Google Scholar 

Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.

PubMed  CAS  Google Scholar 

Thach WT. What is the role of the cerebellum in motor learning and cognition? Trends Cogn Sci. 1998;2:331–7.

PubMed  CAS  Google Scholar 

Paulin MG. The role of the cerebellum in motor control and perception. Brain Behav Evol. 1993;41:39–50.

PubMed  CAS  Google Scholar 

Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

PubMed  PubMed Central  CAS  Google Scholar 

Ito M. Neurophysiological aspects of the cerebellar motor control system. Int J Neurol. 1970;7:162–76.

PubMed  CAS  Google Scholar 

Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

Google Scholar 

Kawato M, Ohmae S, Hoang H, Sanger T. 50 years since the Marr, Ito, and Albus models of the cerebellum. Neurosci. 2020;462:151–74.

Google Scholar 

Bolk L. Das Cerebellum der Säugetiere: eine vergleichend anatomische Untersuchung. Jena: Fischer; 1906.

Eccles JC, Ito M, Szentágothai J. The Cerebellum as a Neuronal Machine. Cerebellum Neuronal Mach. New York: Springer; 1967.

Triarhou LC. Sven Ingvar (1889–1947) of Lund University and the Centennial of His Landmark Dissertation on Cerebellar Phylo-Ontogeny. The Cerebellum. 2019;18:676–87.

PubMed  Google Scholar 

Ingvar S. Zur Phylo- und Ontogenese des Kleinhirns nebst ein Versuch zu einheitlicher Erklärung der zerebellaren Funktion und Lokalisation. Folia Neuro-Biol. 1918;11:205–495.

Kappers CUA, Huber GC, Crosby EC. The comparative anatomy of the nervous system of vertebrates, including man. Oxford: Macmillan; 1936.

Larsell O, Jansen J. The Comparative Anatomy and Histology of the Cerebellum: Vol. 1. From Myxinoids through Birds. Minneapolis: University of Minnesota Press; 1967.

Larsell O, Jansen J. The Comparative Anatomy and Histology of the Cerebellum: Vol. 2. From Monotremes through Apes. Minneapolis: University of Minnesota Press; 1970.

Nieuwenhuys R. Comparative Anatomy of the Cerebellum. Prog Brain Res. 1967;25:1–93.

Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21:370–5.

PubMed  CAS  Google Scholar 

Glickstein M, Voogd J. Cerebellum: Evolution and comparative anatomy. In: Squire L, editor. Encycl Neurosci. London: Academic Press Ltd.; 2009. p. 743–56.

Glickstein M, Sultan F, Voogd J. Discussion forum: Functional localization in the cerebellum. Cortex. 2011;47:59–80.

PubMed  Google Scholar 

Smaers JB. Modeling the evolution of the cerebellum. From Macroevolution to Function. Prog Brain Res. 2014;210:193–216.

PubMed  Google Scholar 

Smaers JB, Vanier DR. Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex. 2019;118:292–305.

PubMed  Google Scholar 

Jerison HJ. Evolution of the brain and intelligence. 1st ed. New York: Academic Press; 1973.

Google Scholar 

Jerison HJ. The theory of encephalization. Ann N Y Acad Sci. 1977;299:146–60.

PubMed  CAS  Google Scholar 

Marino L. A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain Behav Evol. 1998;51:230–8.

PubMed  CAS  Google Scholar 

Bruner E, Manzi G, Arsuaga JL. Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci U S A. 2003;100:15335–40.

PubMed  PubMed Central  CAS  Google Scholar 

Jerison HJ. Animal intelligence as encephalization. Philos Trans R Soc Lond B Biol Sci. 1985;308:21–35.

PubMed  CAS  Google Scholar 

Tower DB. Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size. Cortical neurone density in the fin whale (Balaenoptera Physalus L.) with a note on the cortical neurone density in the Indian elephant. J Comp Neurol. 1954;101:19–51.

PubMed  CAS  Google Scholar 

Deaner RO, Isler K, Burkart J, Van Schaik C. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol. 2007;70:115–24.

PubMed  Google Scholar 

Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31.

PubMed  PubMed Central  Google Scholar 

Herculano-Houzel S, Ribeiro P, Campos L, Da Silva AV, Torres LB, Catania KC, et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav Evol. 2011;78:302–14.

PubMed  PubMed Central  Google Scholar 

Herculano-Houzel S, Collins CE, Wong P, Kaas JH. Cellular scaling rules for primate brains. Proc Natl Acad Sci U S A. 2007;104:3562–7.

PubMed  PubMed Central  CAS  Google Scholar 

Herculano-Houzel S, Avelino-de-Souza K, Neves K, Porfírio J, Messeder D, Feijó LM, et al. The elephant brain in numbers. Front Neuroanat. 2014;8:46.

PubMed  PubMed Central  Google Scholar 

Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S. Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol. 2010;76:32–44.

PubMed  PubMed Central  Google Scholar 

Deary IJ, Penke L, Johnson W. The neuroscience of human intelligence differences. Nat Rev Neurosci. 2010;11:201–11.

PubMed  CAS  Google Scholar 

McDaniel MA. Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intell. 2005;33:337–46.

Google Scholar 

Schoenemann PT, Budinger TF, Sarich VM, Wang WSY. Brain size does not predict general cognitive ability within families. Proc Natl Acad Sci U S A. 2000;97:4932–7.

PubMed  PubMed Central  CAS  Google Scholar 

Willemet R. Reconsidering the evolution of brain, cognition, and behavior in birds and mammals. Front Psychol. 2013;4:396.

PubMed  PubMed Central  Google Scholar 

Cauchard L, Boogert NJ, Lefebvre L, Dubois F, Doligez B. Problem-solving performance is correlated with reproductive success in a wild bird population. Anim Behav. 2013;85:19–26.

Google Scholar 

Smaers JB, Soligo C. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc R Soc B Biol Sci. 2013;280:20130269.

CAS  Google Scholar 

Songthawornpong N, Teasdale TW, Olesen MV, Pakkenberg B. Is there a correlation between the number of brain cells and IQ? Cereb Cortex. 2021;31:650–7.

PubMed  Google Scholar 

Dicke U, Roth G. Neuronal factors determining high intelligence. Philos Trans R Soc B Biol Sci. 2016;371:20150180.

Google Scholar 

留言 (0)

沒有登入
gif