Cerebellar Direct Current Stimulation Reveals the Causal Role of the Cerebellum in Temporal Prediction

Rufener KS, Husemann AM, Zaehle T. The internal time keeper: causal evidence for the role of the cerebellum in anticipating regular acoustic events. Cortex; J Devoted Study Nerv Syst Behav. 2020;133:177–87. https://doi.org/10.1016/j.cortex.2020.09.021.

Article  Google Scholar 

Nobre AC, van Ede F. Anticipated moments: temporal structure in attention. Nat Rev Neurosci. 2018;19(1):34–48. https://doi.org/10.1038/nrn.2017.141.

Article  CAS  PubMed  Google Scholar 

Lange K, Rösler F, Röder B. Early processing stages are modulated when auditory stimuli are presented at an attended moment in time: an event-related potential study. Psychophysiology. 2003;40(5):806–17. https://doi.org/10.1111/1469-8986.00081.

Article  PubMed  Google Scholar 

Praamstra P, Kourtis D, Kwok HF, Oostenveld R. Neurophysiology of implicit timing in serial choice reaction-time performance. J Neurosci: Off J Soc Neurosci. 2006;26(20):5448–55. https://doi.org/10.1523/JNEUROSCI.0440-06.2006.

Article  CAS  Google Scholar 

Breska A, Deouell LY. Automatic bias of temporal expectations following temporally regular input independently of high-level temporal expectation. J Cogn Neurosci. 2014;26(7):1555–71. https://doi.org/10.1162/jocn_a_00564.

Article  PubMed  Google Scholar 

Correa A, Lupiáñez J, Tudela P. The attentional mechanism of temporal orienting: determinants and attributes. Exp Brain Res. 2006;169(1):58–68. https://doi.org/10.1007/s00221-005-0131-x.

Article  PubMed  Google Scholar 

Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shalev N, Nobre AC, van Ede F. Time for what? Breaking down temporal anticipation. Trends Neurosci. 2019;42(6):373–4. https://doi.org/10.1016/j.tins.2019.03.002.

Article  CAS  PubMed  Google Scholar 

Davachi L, DuBrow S. How the hippocampus preserves order: the role of prediction and context. Trends Cogn Sci. 2015;19(2):92–9. https://doi.org/10.1016/s0959-4388(03)00036-9.

Article  PubMed  PubMed Central  Google Scholar 

MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron. 2011;71(4):737–49. https://doi.org/10.1016/j.neuron.2011.07.012.

Matthews WJ, Meck WH. Temporal cognition: connecting subjective time to perception, attention, and memory. Psychol Bull. 2016;142(8):865–907. https://doi.org/10.1037/bul0000045.

Article  PubMed  Google Scholar 

Cravo AM, Rohenkohl G, Santos KM, Nobre AC. Temporal anticipation based on memory. J Cogn Neurosci. 2017;29(12):2081–9.

Article  PubMed  PubMed Central  Google Scholar 

Barnes R, Jones MR. Expectancy, attention, and time. Cogn Psychol. 2000;41(3):254–311.

Article  CAS  PubMed  Google Scholar 

Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978(1):302–17.

Article  PubMed  Google Scholar 

Lewis PA, Miall RC. Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.

Article  CAS  PubMed  Google Scholar 

Bueti D, Walsh V, Frith C, Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20(2):204–14. https://doi.org/10.1162/jocn.2008.20017.

Article  PubMed  Google Scholar 

Davranche K, Nazarian B, Vidal F, Coull J. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. J Cogn Neurosci. 2011;23(11):3318–30.

Article  PubMed  Google Scholar 

Koch G, Oliveri M, Torriero S, Salerno S, Lo Gerfo E, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007;179(2):291–9. https://doi.org/10.1007/s00221-006-0791-1.

Article  PubMed  Google Scholar 

Vicario CM, Martino D, Koch G. Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience. 2013;245:121–8.

Article  CAS  PubMed  Google Scholar 

Wise SP, Boussaoud D, Johnson PB, Caminiti R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci. 1997;20(1):25–42.

Article  CAS  PubMed  Google Scholar 

Pollok B, Gross J, Kamp D, Schnitzler A. Evidence for anticipatory motor control within a cerebello-diencephalic-parietal network. J Cogn Neurosci. 2008;20(5):828–40.

Article  PubMed  Google Scholar 

Herbst SK, Fiedler L, Obleser J. Tracking temporal hazard in the human electroencephalogram using a forward encoding model. Eneuro. 2018;5(2). https://doi.org/10.1523/ENEURO.0017-18.2018

Visalli A, Capizzi M, Ambrosini E, Mazzonetto I, Vallesi A. Bayesian modeling of temporal expectations in the human brain. Neuroimage. 2019;202:116097.

Article  PubMed  Google Scholar 

Breska A, Ivry RB. Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson's disease. Proc Natl Acad Sci USA. 2018;115(48):12283–8. https://doi.org/10.1073/pnas.1810596115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Assmus A, Marshall JC, Noth J, Zilles K, Fink GR. Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience. 2005;132(4):923–7. https://doi.org/10.1016/j.neuroscience.2005.01.047.

Article  CAS  PubMed  Google Scholar 

Field DT, Wann JP. Perceiving time to collision activates the sensorimotor cortex. Curr Biol CB. 2005;15(5):453–8. https://doi.org/10.1016/j.cub.2004.12.081.

Article  CAS  PubMed  Google Scholar 

Filip P, Lošák J, Kašpárek T, Vaníček J, Bareš M. Neural network of predictive motor timing in the context of gender differences. Neural Plast. 2016;2016:2073454. https://doi.org/10.1155/2016/2073454.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain. 2014;137(7):1931–44.

Article  PubMed  PubMed Central  Google Scholar 

Avanzino L, Bove M, Pelosin E, Ogliastro C, Lagravinese G, Martino D. The cerebellum predicts the temporal consequences of observed motor acts. PLoS One. 2015;10(2):e0116607.

Article  PubMed  PubMed Central  Google Scholar 

Brookhart JM, Blachly PH. Cerebellar unit responses to DC polarization. Am J Physiol. 1952;171(3):711–711.

Google Scholar 

Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14:27–30.

Article  PubMed  Google Scholar 

Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum (London, England). 2018;17(2):228–36. https://doi.org/10.1007/s12311-017-0877-2.

Article  PubMed  Google Scholar 

van Dun K, Bodranghien FC, Mariën P, Manto MU. tDCS of the cerebellum: where do we stand in 2016? Technical Issues and Critical Review of the Literature. Front Hum Neurosci. 2016;10:199. https://doi.org/10.3389/fnhum.2016.00199.

Article  PubMed  PubMed Central  Google Scholar 

Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, Celnik P. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci: Off J Soc Neurosci. 2015;35(7):3285–90. https://doi.org/10.1523/JNEUROSCI.2885-14.2015.

Article  CAS  Google Scholar 

Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex (New York, NY:1991). 2011;21(8):1761–70. https://doi.org/10.1093/cercor/bhq246.

Article  Google Scholar 

Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, Zago S, Priori A. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99. https://doi.org/10.1080/02699931.2011.619520.

Article  PubMed  Google Scholar 

Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94. https://doi.org/10.1016/j.brs.2012.03.006.

Article  PubMed  PubMed Central  Google Scholar 

Shah B, Nguyen TT, Madhavan S. Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul. 2013;6(6):966–8. https://doi.org/10.1016/j.brs.2013.04.008.

Article  PubMed  Google Scholar 

Bersani FS, Minichino A, Fattapposta F, Bernabei L, Spagnoli F, Mannarelli D, Francesconi M, Pauletti C, Corrado A, Vergnani L, Taddei I, Biondi M, Delle Chiaie R. Prefrontocerebellar transcranial direct current stimulation increases amplitude and d

Comments (0)

No login
gif