Rufener KS, Husemann AM, Zaehle T. The internal time keeper: causal evidence for the role of the cerebellum in anticipating regular acoustic events. Cortex; J Devoted Study Nerv Syst Behav. 2020;133:177–87. https://doi.org/10.1016/j.cortex.2020.09.021.
Nobre AC, van Ede F. Anticipated moments: temporal structure in attention. Nat Rev Neurosci. 2018;19(1):34–48. https://doi.org/10.1038/nrn.2017.141.
Article CAS PubMed Google Scholar
Lange K, Rösler F, Röder B. Early processing stages are modulated when auditory stimuli are presented at an attended moment in time: an event-related potential study. Psychophysiology. 2003;40(5):806–17. https://doi.org/10.1111/1469-8986.00081.
Praamstra P, Kourtis D, Kwok HF, Oostenveld R. Neurophysiology of implicit timing in serial choice reaction-time performance. J Neurosci: Off J Soc Neurosci. 2006;26(20):5448–55. https://doi.org/10.1523/JNEUROSCI.0440-06.2006.
Breska A, Deouell LY. Automatic bias of temporal expectations following temporally regular input independently of high-level temporal expectation. J Cogn Neurosci. 2014;26(7):1555–71. https://doi.org/10.1162/jocn_a_00564.
Correa A, Lupiáñez J, Tudela P. The attentional mechanism of temporal orienting: determinants and attributes. Exp Brain Res. 2006;169(1):58–68. https://doi.org/10.1007/s00221-005-0131-x.
Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35.
Article CAS PubMed PubMed Central Google Scholar
Shalev N, Nobre AC, van Ede F. Time for what? Breaking down temporal anticipation. Trends Neurosci. 2019;42(6):373–4. https://doi.org/10.1016/j.tins.2019.03.002.
Article CAS PubMed Google Scholar
Davachi L, DuBrow S. How the hippocampus preserves order: the role of prediction and context. Trends Cogn Sci. 2015;19(2):92–9. https://doi.org/10.1016/s0959-4388(03)00036-9.
Article PubMed PubMed Central Google Scholar
MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron. 2011;71(4):737–49. https://doi.org/10.1016/j.neuron.2011.07.012.
Matthews WJ, Meck WH. Temporal cognition: connecting subjective time to perception, attention, and memory. Psychol Bull. 2016;142(8):865–907. https://doi.org/10.1037/bul0000045.
Cravo AM, Rohenkohl G, Santos KM, Nobre AC. Temporal anticipation based on memory. J Cogn Neurosci. 2017;29(12):2081–9.
Article PubMed PubMed Central Google Scholar
Barnes R, Jones MR. Expectancy, attention, and time. Cogn Psychol. 2000;41(3):254–311.
Article CAS PubMed Google Scholar
Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978(1):302–17.
Lewis PA, Miall RC. Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.
Article CAS PubMed Google Scholar
Bueti D, Walsh V, Frith C, Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20(2):204–14. https://doi.org/10.1162/jocn.2008.20017.
Davranche K, Nazarian B, Vidal F, Coull J. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. J Cogn Neurosci. 2011;23(11):3318–30.
Koch G, Oliveri M, Torriero S, Salerno S, Lo Gerfo E, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007;179(2):291–9. https://doi.org/10.1007/s00221-006-0791-1.
Vicario CM, Martino D, Koch G. Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience. 2013;245:121–8.
Article CAS PubMed Google Scholar
Wise SP, Boussaoud D, Johnson PB, Caminiti R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci. 1997;20(1):25–42.
Article CAS PubMed Google Scholar
Pollok B, Gross J, Kamp D, Schnitzler A. Evidence for anticipatory motor control within a cerebello-diencephalic-parietal network. J Cogn Neurosci. 2008;20(5):828–40.
Herbst SK, Fiedler L, Obleser J. Tracking temporal hazard in the human electroencephalogram using a forward encoding model. Eneuro. 2018;5(2). https://doi.org/10.1523/ENEURO.0017-18.2018
Visalli A, Capizzi M, Ambrosini E, Mazzonetto I, Vallesi A. Bayesian modeling of temporal expectations in the human brain. Neuroimage. 2019;202:116097.
Breska A, Ivry RB. Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson's disease. Proc Natl Acad Sci USA. 2018;115(48):12283–8. https://doi.org/10.1073/pnas.1810596115.
Article CAS PubMed PubMed Central Google Scholar
Assmus A, Marshall JC, Noth J, Zilles K, Fink GR. Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience. 2005;132(4):923–7. https://doi.org/10.1016/j.neuroscience.2005.01.047.
Article CAS PubMed Google Scholar
Field DT, Wann JP. Perceiving time to collision activates the sensorimotor cortex. Curr Biol CB. 2005;15(5):453–8. https://doi.org/10.1016/j.cub.2004.12.081.
Article CAS PubMed Google Scholar
Filip P, Lošák J, Kašpárek T, Vaníček J, Bareš M. Neural network of predictive motor timing in the context of gender differences. Neural Plast. 2016;2016:2073454. https://doi.org/10.1155/2016/2073454.
Article CAS PubMed PubMed Central Google Scholar
Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain. 2014;137(7):1931–44.
Article PubMed PubMed Central Google Scholar
Avanzino L, Bove M, Pelosin E, Ogliastro C, Lagravinese G, Martino D. The cerebellum predicts the temporal consequences of observed motor acts. PLoS One. 2015;10(2):e0116607.
Article PubMed PubMed Central Google Scholar
Brookhart JM, Blachly PH. Cerebellar unit responses to DC polarization. Am J Physiol. 1952;171(3):711–711.
Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14:27–30.
Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum (London, England). 2018;17(2):228–36. https://doi.org/10.1007/s12311-017-0877-2.
van Dun K, Bodranghien FC, Mariën P, Manto MU. tDCS of the cerebellum: where do we stand in 2016? Technical Issues and Critical Review of the Literature. Front Hum Neurosci. 2016;10:199. https://doi.org/10.3389/fnhum.2016.00199.
Article PubMed PubMed Central Google Scholar
Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, Celnik P. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci: Off J Soc Neurosci. 2015;35(7):3285–90. https://doi.org/10.1523/JNEUROSCI.2885-14.2015.
Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex (New York, NY:1991). 2011;21(8):1761–70. https://doi.org/10.1093/cercor/bhq246.
Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, Zago S, Priori A. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99. https://doi.org/10.1080/02699931.2011.619520.
Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94. https://doi.org/10.1016/j.brs.2012.03.006.
Article PubMed PubMed Central Google Scholar
Shah B, Nguyen TT, Madhavan S. Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul. 2013;6(6):966–8. https://doi.org/10.1016/j.brs.2013.04.008.
Bersani FS, Minichino A, Fattapposta F, Bernabei L, Spagnoli F, Mannarelli D, Francesconi M, Pauletti C, Corrado A, Vergnani L, Taddei I, Biondi M, Delle Chiaie R. Prefrontocerebellar transcranial direct current stimulation increases amplitude and d
Comments (0)