Lutz, J.-F. Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym. Chem. 1, 55 (2010).
Woolfson, D. N. The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79–112 (2005).
Article CAS PubMed Google Scholar
Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).
Article CAS PubMed PubMed Central Google Scholar
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).
Article CAS PubMed Google Scholar
Park, S.-J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. A 18, 12375–12380 (2004).
Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).
Article CAS PubMed PubMed Central Google Scholar
Gartner, Z. J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).
Article CAS PubMed PubMed Central Google Scholar
Breaker, R. R. & Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).
Article CAS PubMed Google Scholar
Li, Y. & Sen, D. A catalytic DNA for porphyrin metallation. Nat. Struct. Biol. 3, 743–747 (1996).
Article CAS PubMed Google Scholar
Chandra, M. & Silverman, S. K. DNA and RNA can be equally efficient catalysts for carbon-carbon bond formation. J. Am. Chem. Soc. 130, 2936–2937 (2008).
Article CAS PubMed Google Scholar
Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).
Article CAS PubMed Google Scholar
Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Article CAS PubMed Google Scholar
Mathur, D. & Henderson, E. R. Complex DNA nanostructures from oligonucleotide ensembles. ACS Synth. Biol. 2, 180–185 (2013).
Article CAS PubMed Google Scholar
Nie, Z., Wang, P., Tian, C. & Mao, C. Synchronization of two assembly processes to build responsive DNA nanostructures. Angew. Chem. Int. Edn Engl. 53, 8402–8405 (2014).
Merrifield, R. B. Solid phase peptide synthesis. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).
Letsinger, R. L. & Mahadevan, V. Oligonucleotide synthesis on a polymer support. J. Am. Chem. Soc. 87, 3256–3257 (1965).
Al Ouahabi, A., Charles, L. & Lutz, J.-F. O. Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry. J. Am. Chem. Soc. 137, 5629–5635 (2015).
Article CAS PubMed Google Scholar
Hill, S. A., Gerke, C. & Hartmann, L. Recent developments in solid-phase strategies towards synthetic, sequence-defined macromolecules. Chem. Asian J. 13, 3611–3622 (2018).
Article CAS PubMed Google Scholar
Strom, K. R. & Szostak, J. W. Solid-phase synthesis of sequence-defined informational oligomers. J. Org. Chem. 85, 13929–13938 (2020).
Article CAS PubMed PubMed Central Google Scholar
Knight, A. S. et al. Sequence programmable peptoid polymers for diverse materials applications. Adv. Mater. 27, 5665–5691 (2015).
Article CAS PubMed Google Scholar
Ferrand, Y. & Huc, I. Designing helical molecular capsules based on folded aromatic amide oligomers. Acc. Chem. Res. 51, 970–977 (2018).
Article CAS PubMed Google Scholar
Reuther, J. F. et al. Dynamic covalent chemistry enables formation of antimicrobial peptide quaternary assemblies in a completely abiotic manner. Nat. Chem. 10, 45–50 (2018).
Binauld, S., Damiron, D., Connal, L. A., Hawker, C. J. & Drockenmuller, E. Precise synthesis of molecularly defined oligomers and polymers by orthogonal iterative divergent/convergent approaches. Macromol. Rapid Commun. 32, 147–168 (2011).
Article CAS PubMed Google Scholar
Barnes, J. C. et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat. Chem. 7, 810–815 (2015).
Article CAS PubMed Google Scholar
Takizawa, K., Tang, C. & Hawker, C. J. Molecularly defined caprolactone oligomers and polymers: synthesis and characterization. J. Am. Chem. Soc. 130, 1718–1726 (2008).
Article CAS PubMed Google Scholar
Leibfarth, F. A., Johnson, J. A. & Jamison, T. F. Scalable synthesis of sequence-defined, unimolecular macromolecules by flow-IEG. Proc. Natl Acad. Sci. USA 112, 10617–10622 (2015).
Article CAS PubMed PubMed Central Google Scholar
Lee, J. M. et al. Semiautomated synthesis of sequence-defined polymers for information storage. Sci. Adv. 8, 8614 (2022).
Lee, J. M. et al. High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester. Nat. Commun. 11, 56 (2020).
Article CAS PubMed PubMed Central Google Scholar
Laurent, Q., Sakai, N. & Matile, S. An orthogonal dynamic covalent chemistry tool for ring-opening polymerization of cyclic oligochalcogenides on detachable helical peptide templates. Chem. Eur. J. 28, e202200785 (2022).
Article CAS PubMed Google Scholar
Núñez-Villanueva, D. & Hunter, C. A. Replication of a synthetic oligomer using chameleon base-pairs. Chem. Commun. 58, 11005–11008 (2022).
Núñez-Villanueva, D. & Hunter, C. A. H-bond templated oligomer synthesis using a covalent primer. J. Am. Chem. Soc. 144, 17307–17316 (2022).
Article PubMed PubMed Central Google Scholar
Rosenbaum, D. M. & Liu, D. R. Efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid aldehydes. J. Am. Chem. Soc. 125, 13924–13925 (2003).
Article CAS PubMed Google Scholar
Xue, C. & Luo, F.-T. Efficient and rapid synthesis of oligo(p-phenylenevinylene) via iterative coherent approach. J. Org. Chem. 68, 4417–4421 (2003).
Article CAS PubMed Google Scholar
Hoff, E. A., De Hoe, G. X., Mulvaney, C. M., Hillmyer, M. A. & Alabi, C. A. Thiol−ene networks from sequence-defined polyurethane macromers. J. Am. Chem. Soc. 142, 6729–6736 (2020).
Article CAS PubMed Google Scholar
Brown, J. S. et al. Synthesis and solution-phase characterization of sulfonated oligothioetheramides. Macromolecules 50, 43 (2017).
Wei, T., Hwan Jung, J. & Scott, T. F. Dynamic covalent assembly of peptoid-based ladder oligomers by vernier templating. J. Am. Chem. Soc. 137, 14 (2015).
Porel, M. & Alabi, C. A. Sequence-defined polymers via orthogonal allyl acrylamide building blocks. J. Am. Chem. Soc. 136, 13162–13165 (2014).
Article CAS PubMed Google Scholar
Solleder, S. C. & Meier, M. A. R. Sequence-controlled polymers sequence control in polymer chemistry through the passerini three-component reaction. Angew. Chem. Int. Edn Engl. 53, 711–714 (2014).
Wang, S., Tao, Y., Wang, J., Tao, Y. & Wang, X. A versatile strategy for the synthesis of sequence-defined peptoids with side-chain and backbone diversity via amino acid building blocks. Chem. Sci. 10, 1531–1538 (2019).
Yan, J.-J., Wang, D., Wu, D.-C. & You, Y.-Z. Synthesis of sequence-ordered polymers via sequential addition of monomers in one pot. Chem. Commun. 49, 6057 (2013).
Tao, Y., Tao, Y., Tao, Y. & Tao, H. Ugi reaction of amino acids: from facile synthesis of polypeptoids to sequence-defined macromolecules. Macromol. Rapid Commun. 42, 2000515 (2021).
Comments (0)