Identification of a plastic-degrading enzyme from Cryptococcus nemorosus and its use in self-degradable plastics

Allen K, Cohen D, Culver A, Cummins A, Curtis S, Eriksen M, Gordon M, Howe A, Jackson S, Lapis N (2018) Better alternatives now BAN LIST 2.0. The Circulate Initiative. https://www.thecirculateinitiative.org/projects/Better-Alternatives-Now-B.A.N.-List-2.0. Accessed 24 Nov 2022

Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/s41587-019-0036-z

Article  CAS  PubMed  Google Scholar 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Article  CAS  PubMed  Google Scholar 

Bagheri AR, Laforsch C, Greiner A, Agarwal S (2017) Fate of so-called biodegradable polymers in seawater and freshwater. Global Chall 1:1700048. https://doi.org/10.1002/gch2.201700048

Article  Google Scholar 

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Article  CAS  PubMed  Google Scholar 

Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

Article  CAS  Google Scholar 

Chateau M, Rousselle J-P (2020) Masterbatch composition comprising a high concentration of biological entities (U.S. Patent No. 10,723,848). U.S. Patent and Trademark Office. https://patents.google.com/patent/US10723848B2/en

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dauvergne P (2018) Why is the global governance of plastic failing the oceans? Glob Environ Chang 51:22–31. https://doi.org/10.1016/j.gloenvcha.2018.05.002

Article  Google Scholar 

Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF (2020) RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci 117:9451–9457. https://doi.org/10.1073/pnas.1921046117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greene J, California. Department of Resources Recycling and Recovery, CSU CRF (2012) Report topic: PLA and PHA biodegradation in the marine environment: contractor’s report. Dept Resour Recycl Recover. https://www2.calrecycle.ca.gov/Publications/Details/1435. Accessed 24 Nov 2022

Guemard E, Dalibey M (2022) Liquid composition comprising biological entities and uses thereof (U.S. Patent No. 11,384,218). U.S. Patent and Trademark Office. https://patents.google.com/patent/US11384218B2/en

Guemard E, Chateau M, Marty A (2021) Process for preparing a biodegradable plastic composition (U.S. Patent No. 11,198,767). U.S. Patent and Trademark Office. https://patents.google.com/patent/US11198767B2/en

Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haider TP, Völker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed 58:50–62. https://doi.org/10.1002/anie.201805766

Article  CAS  Google Scholar 

Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. Wiley

Google Scholar 

Hoshino A, Isono Y (2002) Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp. Biodegradation 13:141–147. https://doi.org/10.1023/a:1020450326301

Article  CAS  PubMed  Google Scholar 

Hu X, Gao Z, Wang Z, Su T, Yang L, Li P (2016) Enzymatic degradation of poly(butylene succinate) by cutinase cloned from Fusarium solani. Polym Degrad Stab 134:211–219. https://doi.org/10.1016/j.polymdegradstab.2016.10.012

Article  CAS  Google Scholar 

Huang Q, Hiyama M, Kabe T, Kimura S, Iwata T (2020) Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized proteinase K. Biomacromol 21:3301–3307. https://doi.org/10.1021/acs.biomac.0c00759

Article  CAS  Google Scholar 

Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352

Article  CAS  PubMed  Google Scholar 

Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Rev Food Sci Food Saf 9:552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

Article  CAS  Google Scholar 

Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid). Polym Degrad Stab 96:1342–1348. https://doi.org/10.1016/j.polymdegradstab.2011.03.022

Article  CAS  Google Scholar 

Kodama Y, Masaki K, Kondo H, Suzuki M, Tsuda S, Nagura T, Shimba N, Suzuki E, Iefuji H (2009) Crystal structure and enhanced activity of a cutinase-like enzyme from Cryptococcus sp. strain S-2. Proteins: structure, function, and bioinformatics 77:710–717. https://doi.org/10.1002/prot.22484

Article  CAS  Google Scholar 

Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, Yoshida S, Watanabe T, Shinozaki Y, Tsushima S, Kitamoto HK (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express 2:40. https://doi.org/10.1186/2191-0855-2-40

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152. https://doi.org/10.1016/S0141-3910(97)00148-1

Article  CAS  Google Scholar 

Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71:7548–7550. https://doi.org/10.1128/AEM.71.11.7548-7550.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oda Y, Yonetsu A, Urakami T, Tonomura K (2000) Degradation of polylactide by commercial proteases. J Polym Environ 8:29–32. https://doi.org/10.1023/A:1010120128048

Article  Google Scholar 

Prema S, Palempalli UMD (2015) Degradation of polylactide plastic by PLA depolymerase isolated from Thermophilic Bacillus. Int J Curr Microbiol App Sci 4:645–654

CAS  Google Scholar 

Rudnik E, Briassoulis D (2011) Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind Crops Prod 33:648–658. https://doi.org/10.1016/j.indcrop.2010.12.031

Article  CAS  Google Scholar 

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351

Article  CAS  PubMed  Google Scholar 

Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467. https://doi.org/10.1093/nar/gki458

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sulaiman S, Yamato S, Kanaya E, Kim J-J, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562. https://doi.org/10.1128/AEM.06725-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki K, Sakamoto H, Shinozaki Y, Tabata J, Watanabe T, Mochizuki A, Koitabashi M, Fujii T, Tsushima S, Kitamoto HK (2013) Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis. Appl Microbiol Biotechnol 97:7679–7688. https://doi.org/10.1007/s00253-012-4595-x

Article  CAS  PubMed  Google Scholar 

Wang G-X, Huang D, Ji J-H, Völker C, Wurm FR (2021) Seawater-degradable polymers—fighting the marine plastic pollution. Adv Sci 8:2001121. https://doi.org/10.1002/advs.202001121

Article  CAS  Google Scholar 

Watanabe T, Suzuki K, Shinozaki Y, Yarimizu T, Yoshida S, Sameshima-Yamashita Y, Koitabashi M, Kitamoto HK (2015) A UV-induced mutant of Cryptococcus flavus GB-1 with increased production of a biodegradable plastic-degrading enzyme. Process Biochem 50:1718–1724. https://doi.org/10.1016/j.procbio.2015.07.005

Article  CAS  Google Scholar 

Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926. https://doi.org/10.1016/j.polymertesting.2013.05.001

Article  CAS 

留言 (0)

沒有登入
gif