Synergistic corrosion effects of magnetite and microorganisms: microbial community dependency

ASTM (2017) Standard practice for preparing, cleaning, and evaluating corrosion test specimens. ASTM International, West Conshohocken

Beech IB, Sunner JA, Hiraoka K (2005) Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol 8(3):157–168

CAS  PubMed  Google Scholar 

Beech IB, Sztyler M, Gaylarde CC, Smith LL, Sunner J (2014) Biofilms and biocorrosion. In: Liengen T, Féron D, Basséguy R, Beech IB (eds) Understanding biocorrosion: fundamentals and applications. European federation of corrosion publinations, number 66. Elsevier, Cambridge, 80 High Street, Sawston, Cambridge, CB22 3HJ, UK, Oxford, pp 33–56

Benaiges-Fernandez R, Palau J, Offeddu FG, Cama J, Urmeneta J, Soler J, Dold B (2019) Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions. Mar Environ Res 151:104782

Article  CAS  PubMed  Google Scholar 

Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory CJ (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1):1–17

Article  Google Scholar 

Bruijnen P, van Strien W, Doddema S (2020) Integrated approach toward diagnosing microbiologically influenced corrosion in the petroleum industry. SPE Prod Oper 35(01):037–048

CAS  Google Scholar 

Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A (2015) Redox cycling of Fe (II) and Fe (III) in magnetite by Fe-metabolizing bacteria. Science 347(6229):1473–1476

Article  ADS  CAS  PubMed  Google Scholar 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583

Article  CAS  PubMed  PubMed Central  Google Scholar 

Da Silva N, Taniwaki MH, Junqueira VCA, de Arruda Silveira NF, Okazaki MM, Gomes RAR (2018) Microbiological examination methods of food and water: a laboratory manual, 1st edn. CRC Press, London

Book  Google Scholar 

De Marco R, Jiang Z-T, Pejcic B, Poinen E (2005) An in situ synchrotron radiation grazing incidence X-ray diffraction study of carbon dioxide corrosion. J Electrochem Soc 152(10):B389

Article  Google Scholar 

Diaz-Mateus MA, Salgar-Chaparro SJ, Machuca LL, Farhat H (2023) Effect of deposit chemistry on microbial community structure and activity: implications for under-deposit microbial corrosion. Front Microbiol 14:1089649

Article  PubMed  PubMed Central  Google Scholar 

Dobbin PS, Carter JP, García-Salamanca San Juan C, von Hobe M, Powell AK, Richardson DJ (1999) Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol Lett 176(1):131–138

Article  CAS  PubMed  Google Scholar 

Etique M, Jorand FPA, Ruby C (2016) Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens. Geobiology 14(3):237–254

Article  CAS  PubMed  Google Scholar 

Evgeny B, Hughes T, Eskin D (2016) Effect of surface roughness on corrosion behaviour of low carbon steel in inhibited 4 M hydrochloric acid under laminar and turbulent flow conditions. Corros Sci 103:196–205

Article  CAS  Google Scholar 

Gao S, Brown B, Young D, Nesic S, Singer M (2018) Formation mechanisms of iron oxide and iron sulfide at high temperature in H2S corrosion environment. J Electrochem Soc 165(3):C171

Article  CAS  Google Scholar 

George K, Nesic S, de Waard K (2004) Electrochemical investigation and modeling of carbon dioxide corrosion of carbon steel in the presence of acetic acid. NACE International, Houston

Gu T (2014) Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion. J Microb Biochem Technol 6(2):068–074

Article  Google Scholar 

Gu T, Galicia B (2012) Can acid producing bacteria be responsible for very fast MIC pitting? NACE International, Houston

Han J, Nešić S, Brown BN (2008) Galvanic model for localized CO2 corrosion. NACE International, Houston

Han J, Young D, Nesic S (2009) Characterization of the passive film on mild steel in CO2 environments. NACE International, Houston

Huang J, Brown B, Jiang X, Kinsella B, Nesic S (2010) Internal CO2 corrosion of mild steel pipelines under inert solid deposits. NACE International, Houston

Illumina (2011) Preparing 16S ribosomal RNA gene amplicons for the illumina MiSeq system. Illumina technical note. Retrieved from: http://www.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf

Ismail M, Noor NM, Yahaya N, Abdullah A, Rasol RM, Rashid ASA (2014) Effect of pH and temperature on corrosion of steel subject to sulphate-reducing bacteria. J Environ Sci Technol 7(4):209–217

Article  CAS  Google Scholar 

Jia R, Yang D, Xu J, Xu D, Gu T (2017) Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros Sci 127:1–9

Article  ADS  CAS  Google Scholar 

Jin Y, Zhou E, Ueki T, Zhang D, Fan Y, Xu D, Wang F, Lovley DR (2023) Accelerated microbial corrosion by magnetite and electrically conductive pili through direct Fe0-to-microbe electron transfer. Angew Chem 135(38):e202309005

Article  ADS  Google Scholar 

Joshi RV, Gunawan C, Mann R (2021) We are one: multispecies metabolism of a biofilm consortium and their treatment strategies. Front Microbiol 12:635432

Article  PubMed  PubMed Central  Google Scholar 

Kip N, van Veen JA (2015) The dual role of microbes in corrosion. ISME J 9(3):542–551

Article  CAS  PubMed  Google Scholar 

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1

Article  CAS  PubMed  Google Scholar 

Koch G, Varney J, Thompson N, Moghissi O, Gould M, Payer J (2016) International measures of prevention, application, and economics of corrosion technologies study. NACE International. Houston

Kryachko Y, Hemmingsen SM (2017) The role of localized acidity generation in microbially influenced corrosion. Curr Microbiol 74:870–876

Article  CAS  PubMed  Google Scholar 

Lentini C, Wankel S, Hansel C (2012) Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front Microbiol 3:1–19

Article  Google Scholar 

Li X-X, Yang T, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D, Mu B-Z (2017) Responses of microbial community composition to temperature gradient and carbon steel corrosion in production water of petroleum reservoir. Front Microbiol 8:2379

Article  PubMed  PubMed Central  Google Scholar 

Li H, Yang J, Zhang L, Zou H, Li D, Wang Q, Meng DLuM (2019) Influence of thermophilic sulfate-reducing bacteria and deposited CaCO3 on the corrosion of water injection system. Eng Fail Anal 95:359–370

Article  CAS  Google Scholar 

Li Z, Zhou J, Yuan X, Xu Y, Xu D, Zhang D, Feng D, Wang F (2021) Marine biofilms with significant corrosion inhibition performance by secreting extracellular polymeric substances. ACS Appl Mater Interfaces 13(39):47272–47282

Article  CAS  PubMed  Google Scholar 

Li J, Du C, Liu Z, Li X (2022) Extracellular electron transfer routes in microbiologically influenced corrosion of X80 steel by Bacillus licheniformis. Bioelectrochemistry 145:108074

Article  CAS  PubMed  Google Scholar 

Liao W, Yuan J, Wang X, Dai P, Feng W, Zhang Q, Fu A, Li X (2023) Under-deposit microbial corrosion of X65 pipeline steel in the simulated shale gas production environment. Int J Electrochem Sci 18(3):100069

Article  CAS  Google Scholar 

Lin J, Madida BB (2015) Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp. J Basic Microbiol 55(10):1168–1178

Article  CAS  PubMed  Google Scholar 

Little BJ, Lee JS (2014) Microbiologically influenced corrosion: an update. Int Mater Rev 59(7):384–393

Article  CAS  Google Scholar 

Little BJ, Blackwood DJ, Hinks J, Lauro FM, Marsili E, Okamoto A, Rice SA, Wade SA, Flemming HC (2020) Microbially influenced corrosion—any progress? Corros Sci 170:108641

Article  CAS  Google Scholar 

Liu H, Cheng YF (2020) Corrosion of X52 pipeline steel in a simulated soil solution with coexistence of Desulfovibrio desulfuricans and Pseudomonas aeruginosa bacteria. Corros Sci 173:108753

Article  CAS  Google Scholar 

Machuca LL, Lepkova K, Petroski A (2017) Corrosion of carbon steel in the presence of oilfield deposit and thiosulphate-reducing bacteria in CO2 environment. Corros Sci 129:16–25

Article  CAS  Google Scholar 

Mansoori H, Brown B, Young D, Nešić S, Singer M (2019) Effect of FexCayCO3 and CaCO3 scales on the CO2 corrosion of mild steel. Corrosion 75(12):1434–1449

Article  CAS  Google Scholar 

NACE (2013) Preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations, SP0775. NACE International, Houston

NACE (2014) Standard test method: field monitoring of bacterial growth in oil and gas systems. NACE International, Houston

Nieuwoudt M, Comins J, Cukrowski I (2011) The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman microspectroscopy and electrochemical polarization. Part II: In situ Raman spectra of the passive film surface during growth by electrochemical polarization. J. Raman Spectrosc 42(6):1353–1365

Article  ADS  CAS  Google Scholar 

Nordsveen M, Nyborg SNR, Stangeland A (2003) A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-Part 1: theory and verification. Corros 59(5):443–456

Owen J, Barker R, Ropital F, Joshi GR, Kittel J, Jacklin R, Burkle D, Straume E, Karlsdóttir NS (2023) Modified magnetite surface layers on carbon steel in aqueous CO2 environments. Paper presented at the AMPP annual conference + expo, Denver, Colorado, USA

Pandarinathan V, Lepková K, Bailey SI, Gubner R (2013) Impact of mineral deposits on CO2 corrosion of carbon steel. NACE International, Houston

Parker CW, Auler AS, Barton MD, Sasowsky ID, Senko JM, Barton HA (2018) Fe(III) reducing microorganisms from iron ore caves demonstrate fermentative Fe(III) reduction and promote cave formation. Geomicrobiol J 35(4):311–322

Article  CAS  Google Scholar 

Roberge PR (2005) Corrosion engineering, Principles and Practice, 1st edn. Mc Graw-Hill, New York

Google Scholar 

Sadiq FA, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhao J, Zhang H (2021) Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms. Crit Rev Microbiol 47(3):338–358

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif