Serum Proteomics Identified TAFI as a Potential Molecule Facilitating the Migration of Peripheral Monocytes to Damaged White Matter During Chronic Cerebral Hypoperfusion

de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study—the Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14. https://doi.org/10.1136/jnnp.70.1.9

Article  PubMed  PubMed Central  Google Scholar 

Wu X, Ya J, Zhou D, Ding Y, Ji X, Meng R (2021) Pathogeneses and imaging features of cerebral white matter lesions of vascular origins. Aging Dis 12:2031–2051. https://doi.org/10.14336/AD.2021.0414

Article  PubMed  PubMed Central  Google Scholar 

Grinberg LT, Thal DR (2010) Vascular pathology in the aged human brain. Acta Neuropathol 119:277–290. https://doi.org/10.1007/s00401-010-0652-7

Article  PubMed  PubMed Central  Google Scholar 

Merino J (2019) White matter hyperintensities on magnetic resonance imaging: what is a clinician to do? Mayo Clin Proc 94:380–382. https://doi.org/10.1016/j.mayocp.2019.01.016

Article  PubMed  Google Scholar 

Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666. https://doi.org/10.1136/bmj.c3666

Article  PubMed  PubMed Central  Google Scholar 

Matthews F, Brayne C, Lowe J, McKeith I, Wharton S, Ince P (2009) Epidemiological pathology of dementia: attributable-risks at death in the medical research council cognitive function and ageing study. PLoS Med 6:e1000180. https://doi.org/10.1371/journal.pmed.1000180

Article  PubMed  PubMed Central  Google Scholar 

Neuropathology Group of the Medical Research Council Cognitive Function and Aging Study (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357:169–175. https://doi.org/10.1016/s0140-6736(00)03589-3

Article  Google Scholar 

Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P (2023) Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 442:114301. https://doi.org/10.1016/j.bbr.2023.114301

Article  CAS  PubMed  Google Scholar 

Wang N, Tian Y, Yan F, Zhao F, Wang R, Luo Y, Zheng Y (2022) Berberine protects against chronic cerebral hypoperfusion-induced cognitive impairment and hippocampal damage via regulation of the ERK/Nrf2 pathway. J Chem Neuroanat 123:102119. https://doi.org/10.1016/j.jchemneu.2022.102119

Article  CAS  PubMed  Google Scholar 

Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354:572–577. https://doi.org/10.1126/science.aaf8924

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai Q, Xue M, Yong VW (2020) Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain 143:1297–1314. https://doi.org/10.1093/brain/awz393

Article  PubMed  Google Scholar 

Ran H, Duan W, Gong Z, Xu S, Zhu H, Hou X, Jiang L, He Q, Zheng J (2015) Critical contribution of adenosine A2A receptors in bone marrow-derived cells to white matter lesions induced by chronic cerebral hypoperfusion. J Neuropathol Exp Neurol 74:305–318. https://doi.org/10.1097/NEN.0000000000000174

Article  CAS  PubMed  Google Scholar 

Mou K, Shen K, Li Y, Wu Z, Duan W (2021) viaAdenosine A receptor in bone marrow-derived cells mediated macrophages M2 polarization PPARγ-P65 pathway in chronic hypoperfusion situation. Front Aging Neurosci 13:792733. https://doi.org/10.3389/fnagi.2021.792733

Article  CAS  PubMed  Google Scholar 

Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, Kular L, Needhamsen M, Espinosa A, Nilsson E, Overby AK, Butovsky O, Jagodic M, Zhang XM, Harris RA (2018) Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun 9:4845. https://doi.org/10.1038/s41467-018-07295-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gülke E, Gelderblom M, Magnus T (2018) Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 11:1756286418774254. https://doi.org/10.1177/1756286418774254

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stowe AM, Wacker BK, Cravens PD, Perfater JL, Li MK, Hu R, Freie AB, Stuve O, Gidday JM (2012) CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke. J Neuroinflammation 9:33. https://doi.org/10.1186/1742-2094-9-33

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kramann N, Menken L, Pfortner R, Schmid SN, Stadelmann C, Wegner C, Bruck W (2019) Glial fibrillary acidic protein expression alters astrocytic chemokine release and protects mice from cuprizone-induced demyelination. Glia 67:1308–1319. https://doi.org/10.1002/glia.23605

Article  PubMed  Google Scholar 

Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B, Neumann H, Vallieres L, Amor S, Ohl K, Tenbrock K, Beyer C, Kipp M (2015) CXCL10 triggers early microglial activation in the cuprizone model. J Immunol 194:3400–3413. https://doi.org/10.4049/jimmunol.1401459

Article  CAS  PubMed  Google Scholar 

Giannoni P, Claeysen S, Noe F, Marchi N (2020) Peripheral routes to neurodegeneration: passing through the blood-brain barrier. Front Aging Neurosci 12:3. https://doi.org/10.3389/fnagi.2020.00003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishii M, Iadecola C (2020) Risk factor for Alzheimer’s disease breaks the blood-brain barrier. Nature 581:31–32. https://doi.org/10.1038/d41586-020-01152-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Negi N, Das BK (2018) CNS: not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int Rev Immunol 37:57–68. https://doi.org/10.1080/08830185.2017.1357719

Article  PubMed  Google Scholar 

Ge R, Tornero D, Hirota M, Monni E, Laterza C, Lindvall O, Kokaia Z (2017) Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. J Neuroinflammation 14:153. https://doi.org/10.1186/s12974-017-0909-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Yan G, Kong S, Wu M, Yang P, Cao W, Qiao L (2021) GproDIA enables data-independent acquisition glycoproteomics with comprehensive statistical control. Nat Commun 12:6073. https://doi.org/10.1038/s41467-021-26246-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho KC, Oh S, Wang Y, Rosenthal LS, Na CH, Zhang H (2021) Evaluation of the sensitivity and reproducibility of targeted proteomic analysis using data-independent acquisition for serum and cerebrospinal fluid proteins. J Proteome Res 20:4284–4291. https://doi.org/10.1021/acs.jproteome.1c00238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356. https://doi.org/10.2214/ajr.149.2.351

Article  CAS  PubMed  Google Scholar 

Jia X, Wang Z, Huang F, Su C, Du W, Jiang H, Wang H, Wang J, Wang F, Su W, Xiao H, Wang Y, Zhang B (2021) A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry 21:485. https://doi.org/10.1186/s12888-021-03495-6

Article  PubMed  PubMed Central  Google Scholar 

Washida K, Hattori Y, Ihara M (2019) Animal models of chronic cerebral hypoperfusion: from mouse to primate. Int J Mol Sci. https://doi.org/10.3390/ijms20246176

Article  PubMed  PubMed Central  Google Scholar 

Satoh T, Satoh K, Yaoita N, Kikuchi N, Omura J, Kurosawa R, Numano K, Al-Mamun E, Siddique MA, Sunamura S, Nogi M, Suzuki K, Miyata S, Morser J, Shimokawa H (2017) Activated TAFI promotes the development of chronic thromboembolic pulmonary hypertension: a possible novel therapeutic target. Circ Res 120:1246–1262. https://doi.org/10.1161/CIRCRESAHA.117.310640

Article  CAS  PubMed  Google Scholar 

Ma Y, Chen S, Li Y, Wang J, Yang J, Jing J, Liu X, Li Y, Wang J, Zhang P, Tang Z (2023) Effects of Dl-3-n-butylphthalide on cognitive functions and blood-brain barrier in chronic cerebral hypoperfusion rats. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-023-02530-5

Article  PubMed  PubMed Central  Google Scholar 

Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

Article  PubMed  PubMed Central  Google Scholar 

Bai Y, Li Y, Tang Z, Hu L, Jiang X, Chen J, Huang S, Wu K, Xu W, Chen C (2022) Urinary proteome analysis of acute kidney injury in post-cardiac surgery patients using enrichment materials with high-resolution mass spectrometry. Front Bioeng Biotechnol 10:1002853. https://doi.org/10.3389/fbioe.2022.1002853

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif