Characterizing Bone Phenotypes Related to Skeletal Fragility Using Advanced Medical Imaging

Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359(9320):1841–50.

Article  PubMed  Google Scholar 

Siris ES, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.

Article  PubMed  Google Scholar 

Schuit SC, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.

Article  CAS  PubMed  Google Scholar 

Martel D, Monga A, Chang G. Osteoporosis Imaging. Radiol Clin North Am. 2022;60(4):537–45.

Article  PubMed  Google Scholar 

Farr JN, Khosla S. Skeletal changes through the lifespan–from growth to senescence. Nat Rev Endocrinol. 2015;11(9):513–21.

Article  PubMed  PubMed Central  Google Scholar 

Adams AL, et al. Osteoporosis and hip fracture risk from routine computed tomography scans: the Fracture, Osteoporosis, and CT Utilization Study (FOCUS). J Bone Miner Res. 2018;33(7):1291–301.

Article  PubMed  Google Scholar 

Bouxsein ML. Technology insight: noninvasive assessment of bone strength in osteoporosis. Nat Clin Pract Rheumatol. 2008;4(6):310–8.

Article  PubMed  Google Scholar 

Samelson EJ, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 2019;7(1):34–43.

Article  PubMed  Google Scholar 

Mikolajewicz N, et al. HR-pQCT measures of bone microarchitecture predict fracture: systematic review and meta-analysis. J Bone Miner Res. 2019;35(3):446–59.

Article  PubMed  Google Scholar 

Biver E, et al. Evaluation of radius microstructure and areal bone mineral density improves fracture prediction in postmenopausal women. J Bone Miner Res. 2018;33(2):328–37.

Article  PubMed  Google Scholar 

Loundagain LL, et al. Bringing mechanical context to image-based measurements of bone integrity. Curr Osteoporos Rep. 2021;19(5):542–52.

Article  Google Scholar 

Schlecht SH, Bigelow EM, Jepsen KJ. Mapping the natural variation in whole bone stiffness and strength across skeletal sites. Bone. 2014;67:15–22.

Article  PubMed  PubMed Central  Google Scholar 

•• Whittier DE, et al. Bone microarchitecture phenotypes identified in older adults are associated with different levels of osteoporotic fracture risk. J Bone Miner Res. 2021;37(3):428–39. Study demonstrating the presence of bone microarchitecture phenotypes in older adults and the stratification of fracture risk based on phenotype.

•• Bolger MW, et al. External bone size identifies different strength-decline trajectories for the male human femora. J Struct Biol. 2020;212(3):107650. Study demonstrating that wide versus narrow bones in males have difference age-related declines in bone strength due to differences in adaptation of structural traits.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2(2):73–85.

CAS  PubMed  Google Scholar 

Riggs BL, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.

Article  PubMed  Google Scholar 

Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2003;14(Suppl 3):S13–8.

Article  PubMed  Google Scholar 

Cheng XG, et al. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone. 1997;20(3):213–8.

Article  CAS  PubMed  Google Scholar 

Kontulainen SA, et al. Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Neuronal Interact. 2008;8(4):401–9.

CAS  PubMed  Google Scholar 

Currey JD. Bone strength: what are we trying to measure? Calcif Tissue Int. 2001;68(4):205–10.

Article  CAS  PubMed  Google Scholar 

Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 2005;19(6):897–911.

Article  PubMed  Google Scholar 

Khosla S. Evidence in humans for bone as an endocrine organ regulating energy metabolism. Curr Opin Endocr Metab Res. 2023;31:100471.

Jepsen KJ, et al. Femoral neck external size but not aBMD predicts structural and mass changes for women transitioning through menopause. J Bone Miner Res. 2017;32(6):1218–28.

Article  CAS  PubMed  Google Scholar 

• Jepsen KJ, et al. Associations among hip structure, bone mineral density, and strength vary with external bone size in white women. JBMR Plus. 2023;7(3): e10715. Study demonstrating how women with wide versus narrow bone phenotypes have differening bone traits, indicating a coordinated adapation of overall bone structure.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bigelow EM, et al. External bone size is a key determinant of strength-decline trajectories of aging male radii. J Bone Miner Res. 2019;34(5):825–37.

Article  PubMed  Google Scholar 

Jepsen KJ, Bigelow EM, Schlecht SH. Women build long bones with less cortical mass relative to body size and bone size compared with men. Clin Orthop Relat Res. 2015;473(8):2530–9.

Article  PubMed  PubMed Central  Google Scholar 

Schlecht SH, Bigelow EM, Jepsen KJ. How does bone strength compare across sex, site, and ethnicity? Clin Orthop Relat Res. 2015;473(8):2540–7.

Article  PubMed  PubMed Central  Google Scholar 

van den Bergh JP, et al. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int. 2021;32(8):1465–85.

Article  PubMed  PubMed Central  Google Scholar 

Amin S, Khosla S. Sex- and age-related differences in bone microarchitecture in men relative to women assessed by high-resolution peripheral quantitative computed tomography. J Osteoporos. 2012;2012: 129760.

Article  PubMed  PubMed Central  Google Scholar 

Boutroy S, et al. Microarchitecture and peripheral BMD are impaired in postmenopausal white women with fracture independently of total hip T-score: an international multicenter study. J Bone Miner Res. 2016;31(6):1158–66.

Article  CAS  PubMed  Google Scholar 

Burt LA, et al. Lower bone density, impaired microarchitecture, and strength predict future fragility fracture in postmenopausal women: 5-year follow-up of the Calgary CaMos Cohort. J Bone Miner Res. 2018;33(4):589–97.

Article  PubMed  Google Scholar 

Whittier DE, Burt LA, Boyd SK. A new approach for quantifying localized bone loss by measuring void spaces. Bone. 2021;143: 115785.

Article  PubMed  Google Scholar 

Edwards MH, et al. Cluster analysis of bone microarchitecture from high resolution peripheral quantitative computed tomography demonstrates two separate phenotypes associated with high fracture risk in men and women. Bone. 2016;88:131–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Litwic AE, et al. Bone phenotype assessed by HRpQCT and Associations with Fracture Risk in the GLOW Study. Calcif Tissue Int. 2018;102(1):14–22.

Article  CAS  PubMed  Google Scholar 

Westbury LD, et al. Cluster analysis of finite element analysis and bone microarchitectural parameters identifies phenotypes with high fracture risk. Calcif Tissue Int. 2019;105(3):252–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Whittier DE, et al. Hip fractures in older adults are associated with the low density bone phenotype and heterogeneous deterioration of bone microarchitecture. J Bone Miner Res. 2022;37(10):1963–72. Study demonstrating how individuals with hip fractures are predominantly associated with a specific phenotype in combination with structural bone deterioration.

Article  CAS  PubMed  Google Scholar 

Schlecht SH, Jepsen KJ. Functional integration of skeletal traits: an intraskeletal assessment of bone size, mineralization, and volume covariance. Bone. 2013;56(1):127–38.

Article  PubMed  PubMed Central  Google Scholar 

Matkovic V, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93(2):799–808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markou KB, et al. Bone acquisition during adolescence in athletes. Ann N Y Acad Sci. 2010;1205:12–6.

Article  PubMed  Google Scholar 

Hui SL, Slemenda CW, Johnston CC Jr. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int. 1990;1(1):30–4.

Article  CAS  PubMed  Google Scholar 

Rosen CJ. The Epidemiology and Pathogenesis of Osteoporosis. In: Feingold KR et al., editors. Endotext. South Dartmouth (MA); 2000.

Baxter-Jones AD, et al. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39.

Article 

留言 (0)

沒有登入
gif