Comparison of monoclonal antibody disposition predictions using different physiologically based pharmacokinetic modelling platforms

Tang Y, Li X, Cao Y (2021) Which factors matter the most? Revisiting and dissecting antibody therapeutic doses. Drug Discovery Today 26:1980–1990. https://doi.org/10.1016/j.drudis.2021.04.022

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shah DK, Betts AM (2013) Antibody biodistribution coefficients. MAbs 5:297–305. https://doi.org/10.4161/mabs.23684

Article  PubMed  PubMed Central  Google Scholar 

Glassman PM, Abuqayyas L, Balthasar JP (2015) Assessments of antibody biodistribution. J Clin Pharmacol 55:S29–S38. https://doi.org/10.1002/jcph.365

Article  PubMed  CAS  Google Scholar 

Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709. https://doi.org/10.1007/s10928-007-9065-1

Article  PubMed  CAS  Google Scholar 

Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668. https://doi.org/10.1002/jps.20178

Article  PubMed  CAS  Google Scholar 

Jadhav SB, Khaowroongrueng V, Derendorf H (2016) Microdialysis of large molecules. J Pharm Sci 105:3233–3242. https://doi.org/10.1016/j.xphs.2016.08.016

Article  PubMed  CAS  Google Scholar 

Dragatin C, Polus F, Bodenlenz M et al (2016) Secukinumab distributes into dermal interstitial fluid of psoriasis patients as demonstrated by open flow microperfusion. Exp Dermatol 25:157–159. https://doi.org/10.1111/exd.12863

Article  PubMed  Google Scholar 

Liu S, Shah DK (2022) Mathematical models to characterize the absorption, distribution, metabolism, and excretion of protein therapeutics. Drug Metab Dispos 50:867–878. https://doi.org/10.1124/dmd.121.000460

Article  PubMed  CAS  Google Scholar 

Covell DG, Barbet J, Holton OD et al (1986) Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res 46:3969–3978

PubMed  CAS  Google Scholar 

Baxter LT, Zhu H, Mackensen DG, Jain RK (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54:1517–1528

PubMed  CAS  Google Scholar 

Ferl GZ, Wu AM, DiStefano JJ (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33:1640–1652. https://doi.org/10.1007/s10439-005-7410-3

Article  PubMed  Google Scholar 

Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67–86. https://doi.org/10.1007/s10928-011-9232-2

Article  PubMed  CAS  Google Scholar 

Gill KL, Gardner I, Li L, Jamei M (2016) A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins. AAPS J 18:156–170. https://doi.org/10.1208/s12248-015-9819-4

Article  PubMed  CAS  Google Scholar 

Niederalt C, Kuepfer L, Solodenko J et al (2018) A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim. J Pharmacokinet Pharmacodyn 45:235–257. https://doi.org/10.1007/s10928-017-9559-4

Article  PubMed  CAS  Google Scholar 

Zhou H, Bolger M, Lukacova V (2015) Application of PBPK modeling to predict monoclonal antibody disposition after intravenous and subcutaneous administration in rats and humans [ABSTRACT]. In: AAPS. Orlando, FL

den Broeder A, van de Putte L, Rau R et al (2002) A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol 29:2288–2298

Google Scholar 

Weisman MH, Moreland LW, Furst DE et al (2003) Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther 25:1700–1721. https://doi.org/10.1016/S0149-2918(03)80164-9

Article  PubMed  CAS  Google Scholar 

Palaparthy R, Udata C, Hua SY et al (2018) A randomized study comparing the pharmacokinetics of the potential biosimilar PF-06438179/GP1111 with Remicade® (infliximab) in healthy subjects (REFLECTIONS B537–01). Expert Rev Clin Immunol 14:329–336. https://doi.org/10.1080/1744666X.2018.1446829

Article  PubMed  CAS  Google Scholar 

Park W, Lee SJ, Yun J, Yoo DH (2015) Comparison of the pharmacokinetics and safety of three formulations of infliximab (CT-P13, EU-approved reference infliximab and the US-licensed reference infliximab) in healthy subjects: a randomized, double-blind, three-arm, parallel-group, single-dose, Phase I study. Expert Rev Clin Immunol 11:25–31. https://doi.org/10.1586/1744666X.2015.1090311

Article  Google Scholar 

Kavanaugh A, St Clair EW, McCune WJ et al (2000) Chimeric anti-tumor necrosis factor-alpha monoclonal antibody treatment of patients with rheumatoid arthritis receiving methotrexate therapy. J Rheumatol 27:841–850

PubMed  CAS  Google Scholar 

EMEA (2004) Humira EPAR - scientific disussion

FDA (1999) Remicade (infliximab) for IV injection - supplement approval

Suzuki T, Ishii-Watabe A, Tada M et al (2010) Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol 184:1968–1976. https://doi.org/10.4049/jimmunol.0903296

Article  PubMed  CAS  Google Scholar 

Kaymakcalan Z, Sakorafas P, Bose S et al (2009) Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol 131:308–316. https://doi.org/10.1016/j.clim.2009.01.002

Article  PubMed  CAS  Google Scholar 

Garg A, Balthasar JP (2009) Investigation of the influence of FcRn on the distribution of IgG to the brain. AAPS J 11:553–557. https://doi.org/10.1208/s12248-009-9129-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Denney WS, Duvvuri S, Buckeridge C (2015) Simple, automatic noncompartmental analysis: the PKNCA R package. J Pharmacokinet Pharmacodyn 42(11–107):S65. https://doi.org/10.1007/s10928-015-9432-2

Article  Google Scholar 

Rohatgi A (2021) Webplotdigitizer: Version 4.5

Rafidi H, Rajan S, Urban K et al (2022) Effect of molecular size on interstitial pharmacokinetics and tissue catabolism of antibodies. mAbs 14:2085535. https://doi.org/10.1080/19420862.2022.2085535

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jadhav SB, Khaowroongrueng V, Fueth M et al (2017) Tissue distribution of a therapeutic monoclonal antibody determined by large pore microdialysis. J Pharm Sci 106:2853–2859. https://doi.org/10.1016/j.xphs.2017.03.033

Article  PubMed  CAS  Google Scholar 

Chang HP, Cheung YK, Shah DK (2021) Whole-body pharmacokinetics and physiologically based pharmacokinetic model for monomethyl Auristatin E (MMAE). J Clin Med 10:1332. https://doi.org/10.3390/jcm10061332

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jin F, Tayab ZR, Balthasar JP (2006) Pharmacokinetic and pharmacodynamic effects of high-dose monoclonal antibody therapy in a rat model of immune thrombocytopenia. AAPS J 7:E895-902. https://doi.org/10.1208/aapsj070487

Article  PubMed  PubMed Central  Google Scholar 

Viala M, Vinches M, Alexandre M et al (2018) Strategies for clinical development of monoclonal antibodies beyond first-in-human trials: tested doses and rationale for dose selection. Br J Cancer 118:679–697. https://doi.org/10.1038/bjc.2017.473

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mahmood I, Tegenge MA, Golding B (2020) Considerations for optimizing dosing of immunoglobulins based on pharmacokinetic evidence. Antibodies 9:24. https://doi.org/10.3390/antib9020024

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ryman JT, Meibohm B (2017) pharmacokinetics of monoclonal antibodies. CPT: pharmacometrics & systems. Pharmacology 6:576–588. https://doi.org/10.1002/psp4.12224

Article  CAS  Google Scholar 

Wu S, Le Prieult F, Phipps CJ et al (2022) PBPK model for antibody disposition in mouse brain: validation using large-pore microdialysis data. J Pharmacokinet Pharmacodyn 49:579–592. https://doi.org/10.1007/s10928-022-09823-x

Article  PubMed  CAS  Google Scholar 

Mandikian D, Figueroa I, Oldendorp A et al (2018) Tissue physiology of cynomolgus monkeys: cross-species comparison and implications for translational pharmacology. AAPS J 20:107. https://doi.org/10.1208/s12248-018-0264-z

Article  PubMed  CAS  Google Scholar 

Abdiche YN, Yeung YA, Chaparro-Riggers J et al (2015) The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs 7:331–343. https://doi.org/10.1080/19420862.2015.1008353

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dickinson BL, Badizadegan K, Wu Z et al (1999) Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104:903–911. https://doi.org/10.1172/JCI6968

留言 (0)

沒有登入
gif