Muhanguzi D, Mugenyi A, Bigirwa G, Kamusiime M, Kitibwa A, Akurut GG, Ochwo S, Amanyire W, Okech SG, Hattendorf J, Tweyongyere R. African animal trypanosomiasis as a constraint to livestock health and production in Karamoja region: a detailed qualitative and quantitative assessment. BMC Vet Res. 2017;13(1):1–13.
Austen EE, Hegh E. Tsetse-flies. Their characteristics, distribution, and bionomics, with some account of possible methods for their control. 1922.
Leak SG. Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis; 1999.
Who.int. https://www.who.int/neglected_diseases/news/NTD_disease_packs.pdf. Accessed 2 Feb 2022.
Hide G. History of sleeping sickness in East Africa. Clin Microbiol Rev. 1999;12(1):112–25.
Article CAS PubMed PubMed Central Google Scholar
Leak SG, Ejigu D, Vreysen MJ. Collection of entomological baseline data for tsetse area-wide integrated pest management programmes. Rome: Food and Agriculture Organization of the United Nations (FAO); 2008.
Vale GA, Torr SJ. Development of bait technology to control tsetse. In: The trypanosomiases. Wallingford: CABI Publishing; 2004. p. 509–23.
Lindh JM, Torr SJ, Vale GA, Lehane MJ. Improving the cost-effectiveness of artificial visual baits for controlling the tsetse fly Glossina fuscipes fuscipes. PLoS Negl Trop Dis. 2009;3(7): e474.
Article PubMed PubMed Central Google Scholar
Shaw AP, Torr SJ, Waiswa C, Cecchi G, Wint GR, Mattioli RC, Robinson TP. Estimating the costs of tsetse control options: an example for Uganda. Prev Vet Med. 2013;110(3–4):290–303.
Article CAS PubMed Google Scholar
Ford J, Katondo KM. Maps of tsetse fly (Glossina) distribution in Africa, 1973 according to sub-generic groups on scale of 1: 5,000,000. Bull Anim Health Prod Afr. 1977;25(2):188–94.
McCord PF, Messina JP, Campbell DJ, Grady SC. Tsetse fly control in Kenya’s spatially and temporally dynamic control reservoirs: a cost analysis. Appl Geogr. 2012;34:189–204.
Kenya Ministry of livestock development. Strategy for tsetse and trypanosomiasis eradication in Kenya 2011–2021; 2011.
Brightwell R, Dransfield RD, Williams BG. Factors affecting seasonal dispersal of the tsetse flies Glossina pallidipes and G. longipennis (Diptera: Glossinidae) at Nguruman, south-west Kenya. Bull Entomol Res. 1992;82(2):167–82.
Messina JP, Moore NJ, DeVisser MH, McCord PF, Walker ED. Climate change and risk projection: dynamic spatial models of tsetse and African trypanosomiasis in Kenya. Ann Assoc Am Geogr. 2012;102(5):1038–48.
Article PubMed PubMed Central Google Scholar
Ngari NN, Gamba DO, Olet PA, Zhao W, Paone M, Cecchi G. Developing a national atlas to support the progressive control of tsetse-transmitted animal trypanosomosis in Kenya. Parasites Vectors. 2020;13:1–2.
Spickler AR. African animal trypanosomiasis. 2018. http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php.
Okello WO, Muhanguzi D, MacLeod ET, Welburn SC, Waiswa C, Shaw AP. Contribution of draft cattle to rural livelihoods in a district of southeastern Uganda endemic for bovine parasitic diseases: an economic evaluation. Parasites Vectors. 2015;8(1):1–9.
Muhanguzi D, Okello WO, Kabasa JD, Waiswa C, Welburn SC, Shaw AP. Cost analysis of options for management of African animal trypanosomiasis using interventions targeted at cattle in Tororo District; south-eastern Uganda. Parasites Vectors. 2015;8(1):1–9.
Muhanguzi D, Picozzi K, Hattendorf J, Thrusfield M, Kabasa JD, Waiswa C, Welburn SC. The burden and spatial distribution of bovine African trypanosomes in small holder crop-livestock production systems in Tororo District, south-eastern Uganda. Parasites Vectors. 2014;7(1):1.
Majekodunmi AO, Fajinmi A, Dongkum C, Picozzi K, Thrusfield MV, Welburn SC. A longitudinal survey of African animal trypanosomiasis in domestic cattle on the Jos Plateau, Nigeria: prevalence, distribution and risk factors. Parasites Vectors. 2013;6(1):1.
Swallow BM. Impacts of trypanosomiasis on African agriculture. Rome: Food and Agriculture Organization of the United Nations; 2000.
FAO. Programme against African trypanosomosis (PAAT). The disease. https://www.fao.org/paat/the-programme/the-disease/en/. Accessed 6 Feb 2022.
Kimaro EG, Abiola PM. Epidemiology and economic importance of African animal trypanosomiasis. In: Combating and controlling nagana and tick-borne diseases in livestock. Hershey: IGI Global; 2021. p. 24–52.
WHO. Trypanosomiasis, human African (sleeping sickness). 2022. https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness). Accessed 2 Feb 2022.
Bukachi SA, Wandibba S, Nyamongo IK. The socio-economic burden of human African trypanosomiasis and the coping strategies of households in the South Western Kenya foci. PLoS Negl Trop Dis. 2017;11(10): e0006002.
Article PubMed PubMed Central Google Scholar
Alsan M. The effect of the tsetse fly on African development. Am Econ Rev. 2015;105(1):382–410.
Sanofi. US FDA approves fexinidazole as the first all-oral treatment for sleeping sicks. 2021. https://www.sanofi.com/en/media-room/press-releases/2021/2021-07-19-05-30-00-2264542. Accessed 6 Feb 2022.
U.S. Food & Drug Administration. Search orphan drug designations and approvals—fexinidazole. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=513915. Accessed 6 Feb 2022.
World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: a roadmap for implementation. Geneva: World Health Organization; 2012.
Franco JR, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, Simarro PP, Zhao W, Argaw D. Monitoring the elimination of human African trypanosomiasis at continental and country level: update to 2018. PLoS Negl Trop Dis. 2020;14(5): e0008261.
Article PubMed PubMed Central Google Scholar
Holmes P. First WHO meeting of stakeholders on elimination of gambiense Human African trypanosomiasis. PLoS Negl Trop Dis. 2014;8(10): e3244.
Article PubMed PubMed Central Google Scholar
World Health Organization. Report of the second WHO stakeholders meeting on rhodesiense human African trypanosomiasis, Geneva, 26–28 April 2017. World Health Organization; 2017.
Ongoma V, Chen H, Omony GW. Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theor Appl Climatol. 2018;131(1):295–308.
Lin S, DeVisser MH, Messina JP. An agent-based model to simulate tsetse fly distribution and control techniques: a case study in Nguruman, Kenya. Ecol Model. 2015;314:80–9.
DeVisser MH, Messina JP, Moore NJ, Lusch DP, Maitima J. A dynamic species distribution model of Glossina subgenus Morsitans: the identification of tsetse reservoirs and refugia. Ecosphere. 2010;1(1):1–21.
Slater H, Michael E. Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS ONE. 2012;7(2): e32202.
Article CAS PubMed PubMed Central Google Scholar
Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, Benz D, Gething PW, Howes RE, Patil AP, Temperley WH, Bangs MJ, Chareonviriyaphap T, Elyazar IRF, Harbach RE, Hemingway J, Manguin S, Mbogo CM, Rubio-Palis Y, Godfray HCJ. Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Med. 2010;7(2): e1000209.
Article PubMed PubMed Central Google Scholar
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis. 2019;13(3): e0007213. https://doi.org/10.1371/journal.pntd.0007213.
Article PubMed PubMed Central Google Scholar
Brownstein JS, Holford TR, Fish D. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect. 2003;111(9):1152–7.
Article PubMed PubMed Central Google Scholar
Gurgel-Gonçalves R, Galvao C, Costa J, Peterson AT. Geographic distribution of Chagas disease vectors in Brazil based on ecological niche modeling. J Trop Med. 2012. https://doi.org/10.1155/2012/705326.
Article PubMed PubMed Central Google Scholar
Soberón J, Arroyo-Peña B. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS ONE. 2017;12: e0175138. https://doi.org/10.1371/journal.pone.0175138.
Article CAS PubMed PubMed Central Google Scholar
Hutchinson GE. Cold spring harbor symposium on quantitative biology. Concluding Remarks. 1957;22:415–27.
Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Modell. 2000;135:147–86.
Ouma JO, Krafsur ES. The influence of temporal and seasonal changes on genetic diversity and population structure of the tsetse fly, Glossina pallidipes in Kenya. East Afr Agric Forum J. 2010;77:59–68.
Gooding RH, Krafsur ES. Tsetse genetics: contributions to biology, systematics, and control of tsetse flies. Annu Rev Entomol. 2005;50:101.
Article CAS PubMed PubMed Central Google Scholar
Li A, Bo Y, Zhu Y, Guo P, Bi J, He Y. Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method. Remote Sens Environ. 2013;135:52–63.
Ayub R, Messier KP, Serre ML, Mahinthakumar K. Non-point source evaluation of groundwater nitrate contamination from agriculture under geologic uncertainty. Stoch Env Res Risk Assess. 2019;33:939–56.
Shi Y, Zhou X, Yang X, Shi L, Ma S. Merging satellite ocean color data with Bayesian maximum entropy method. IEEE J Sel Topics Appl Earth Obs Remote Sens. 2015;8(7):3294–304.
Xu Y, Serre ML, Reyes J, Vizuete W. Bayesian maximum entropy integration of ozone observations and model predictions: a national application. Environ Sci Technol. 2016;50(8):4393–400.
Article CAS PubMed Google Scholar
Didan K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. 2015. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006. Accessed 02 Sept 2022.
Wan Z, Hook S, Hulley G. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN grid V006. NASA EOSDIS Land Processes DAAC. 2015;10.
Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X. MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ. 2010;114(1):168–82.
Comments (0)