Edaravone Confers Neuroprotective, Anti-inflammatory, and Antioxidant Effects on the Fetal Brain of a Placental-ischemia Mouse Model

Amash A, Holcberg G, Sapir O, Huleihel M (2012) Placental secretion of interleukin-1 and interleukin-1 receptor antagonist in preeclampsia: effect of magnesium sulfate. J Interferon Cytokine Res 32:432–441. https://doi.org/10.1089/jir.2012.0013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atallah M, Badawy G, El–Garawani I, Abdallah F, El–Borm H (2021a) Neurotoxic effect of nalufin on the histology, ultrastructure, cell cycle and apoptosis of the developing chick embryo and its amelioration by selenium. Food Chemical Toxicol 158:112693. https://doi.org/10.1016/j.fct.2021.112693

Article  CAS  Google Scholar 

Atallah M, Yamashita T, Abe K (2021b) Effect of edaravone on pregnant mice and their developing fetuses subjected to placental ischemia. Reprod Biol Endocrinol 19:19. https://doi.org/10.1186/s12958-021-00707-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carver AR, Tamayo E, Perez-Polo JR, Saade GR, Hankins GD, Costantine MM (2014) The effect of maternal pravastatin therapy on adverse sensorimotor outcomes of the offspring in a murine model of preeclampsia. Int J Dev Neurosci 33:33–40. https://doi.org/10.1016/j.ijdevneu.2013.11.004

Article  CAS  PubMed  Google Scholar 

Cha SJ, Kim K (2022) Effects of the edaravone, a drug approved for the treatment of Amyotrophic Lateral Sclerosis, on mitochondrial function and neuroprotection. Antioxidants 11(2):195. https://doi.org/10.3390/antiox11020195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Cai Y, Zhu X, Wang J, Gao F, Yang M, Mao L, Zhang Z, Sun B (2022) Edaravone dexborneol treatment attenuates neuronal apoptosis and improves neurological function by suppressing 4-hne-associated oxidative stress after subarachnoid hemorrhage. Front Pharmacol 13:848529. https://doi.org/10.3389/fphar.2022.848529

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen W, Hartman R, Ayer R, Marcantonio S, Kamper J, Tang J, Zhang JH (2009) Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain. J Neurochem 111:726–36. https://doi.org/10.1111/j.1471-4159.2009.06362.x

Article  CAS  PubMed  Google Scholar 

Chen X, Patra A, Sadowska GB, Stonestreet BS (2018) Ischemic-Reperfusion Injury Increases Matrix Metalloproteinases and Tissue Metalloproteinase Inhibitors in Fetal Sheep Brain. Dev Neurosci 40:234–45. https://doi.org/10.1159/000489700

Article  CAS  PubMed  Google Scholar 

Choi SS, Lee HJ, Lim I, Satoh J, Kim SU (2014) Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9(4):e92325. https://doi.org/10.1371/journal.pone.0092325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clayton AM, Shao Q, Paauw ND, Giambrone AB, Granger JP, Warrington JP (2018) Postpartum increases in cerebral edema and inflammation in response to placental ischemia during pregnancy. Brain Behav Immun 70:376–89. https://doi.org/10.1016/j.bbi.2018.03.028

Article  PubMed  PubMed Central  Google Scholar 

Curran EA, O’Keeffe GW, Looney AM, Moloney G, Hegarty SV, Murray DM, Khashan AS, Kenny LC (2018) Exposure to hypertensive disorders of pregnancy increases the risk of autism spectrum disorder in affected offspring. Mol Neurobiol 55:5557–5564. https://doi.org/10.1007/s12035-017-0794-x

Article  CAS  PubMed  Google Scholar 

Dachew BA, Mamun A, Maravilla JC, Alati R (2018) Pre-eclampsia and the risk of autism-spectrum disorder in offspring: meta-analysis. Br J Psychiatry 212:142–7. https://doi.org/10.1192/bjp.2017.27

Article  PubMed  Google Scholar 

Dada T, Rosenzweig JM, Al Shammary M, Firdaus W, Al Rebh S, Borbiev T, Tekes A, Zhang J, Alqahtani E, Mori S, Pletnikov MV, Johnston MV, Burd I (2014) Mouse model of intrauterine inflammation: sex-specific differences in long-term neurologic and immune sequelae. Brain Behav Immun 38:142–150. https://doi.org/10.1016/j.bbi.2014.01.014

Article  PubMed  Google Scholar 

Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, Oleszczuk J (2012) The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol 93:75–81. https://doi.org/10.1016/j.jri.2012.01.006

Article  CAS  PubMed  Google Scholar 

De Lella Ezcurra AL, Chertoff M, Ferrari C, Graciarena M, Pitossi F (2010) Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol Dis 37:630–40. https://doi.org/10.1016/j.nbd.2009.11.018

Article  CAS  PubMed  Google Scholar 

Dong Y, Yu Z, Sun Y, Zhou H, Stites J, Newell K, Weiner CP (2011) Chronic fetal hypoxia produces selective brain injury associated with altered nitric oxide synthases. Am J Obstet Gynecol 204:254.e16-254.e2.54E28. https://doi.org/10.1016/j.ajog.2010.11.032

English FA, Kenny LC, McCarthy FP (2015) Risk factors and effective management of preeclampsia. Integr Blood Press Control 8:7–12. https://doi.org/10.2147/IBPC.S50641

Article  PubMed  PubMed Central  Google Scholar 

Figueroa H, Alvarado C, Cifuentes J, Lozano M, Rocco J, Cabezas C, Illanes SE, Eixarch E, Hernández-Andrade E, Gratacós E, Irarrazabal CE (2017) Oxidative damage and nitric oxide synthase induction by surgical uteroplacental circulation restriction in the rabbit fetal heart. Prenat Diagn 37:453–9. https://doi.org/10.1002/pd.5031

Article  CAS  PubMed  Google Scholar 

Gadonski G, LaMarca BB, Sullivan E, Bennett W, Chandler D, Granger JP (2006) Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension 48:711–6. https://doi.org/10.1161/01.HYP.0000238442.33463.94

Article  CAS  PubMed  Google Scholar 

Garcia CAB, Catalão CHR, Machado HR, Júnior IM, Romeiro TH, Peixoto-Santos JE, Santos MV, da Silva Lopes L (2017) Edaravone reduces astrogliosis and apoptosis in young rats with kaolin-induced hydrocephalus. Childs Nerv Syst 33:419–28. https://doi.org/10.1007/s00381-016-3313-x

Article  PubMed  Google Scholar 

Giambrone AB, Logue OC, Shao Q, Bidwell GL 3rd, Warrington JP (2019) Perinatal micro-bleeds and neuroinflammation in E19 rat fetuses exposed to utero-placental ischemia. Int J Mol Sci 20:4051. https://doi.org/10.3390/ijms20164051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giussani DA (2016) The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol 594:1215–30. https://doi.org/10.1113/JP271099

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Rodriguez PJ, Xiong F, Li Y, Zhou J, Zhang L (2014) Fetal hypoxia increases vulnerability of hypoxic-ischemic brain injury in neonatal rats: role of glucocorticoid receptors. Neurobiol Dis 65:172–9. https://doi.org/10.1016/j.nbd.2014.01.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graham HK, Boyd R, Carlin JB, Dobson F, Lowe K, Nattrass G, Thomason P, Wolfe R, Reddihough D (2008) Does botulinum toxin a combined with bracing prevent hip displacement in children with cerebral palsy and “hips at risk”? A randomized, controlled trial. J Bone Joint Surg Am 90:23–33. https://doi.org/10.2106/JBJS.F.01416

Article  PubMed  Google Scholar 

Gu Y, He M, Zhou X, Liu J, Hou N, Bin T, Zhang Y, Li T, Chen J (2016) Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by suppressing apoptosis in astrocyte. Sci Rep 6:18587. https://doi.org/10.1038/srep18587

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gumusoglu SB, Chilukuri ASS, Santillan DA, Santillan MK, Stevens HE (2020) Neurodevelopmental outcomes of prenatal preeclampsia exposure. Trends Neurosci 43:253–68. https://doi.org/10.1016/j.tins.2020.02.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gunn AJ, Bennet L (2009) Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin Perinatol 36:579–93. https://doi.org/10.1016/j.clp.2009.06.007

Article  PubMed  PubMed Central  Google Scholar 

Guo Z, Wu HT, Li XX, Yu Y, Gu RZ, Lan R, Qin XY (2020) Edaravone protects rat astrocytes from oxidative or neurotoxic inflammatory insults by restoring Akt/Bcl-2/Caspase-3 signaling axis. IBRO Rep 8:122–8. https://doi.org/10.1016/j.ibror.2020.04.003

Article  PubMed  PubMed Central  Google Scholar 

Harati-Sadegh M, Kohan L, Teimoori B, Mehrabani M, Salimi S (2018) The association of the placental Hypoxia-inducible factor1-α polymorphisms and HIF1-α mRNA expression with preeclampsia. Placenta 67:31–7. https://doi.org/10.1016/j.placenta.2018.05.005

Article  CAS  PubMed  Google Scholar 

Humason G (1979) Animal tissue techniques, 4th edn. Freeman, W.Co, San Francisisco

Google Scholar 

Hutter D, Kingdom J, Jaeggi E (2010) Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr 2010:401323. https://doi.org/10.1155/2010/401323

Article  PubMed  PubMed Central  Google Scholar 

Imai K, Kotani T, Tsuda H, Mano Y, Nakano T, Ushida T, Li H, Miki R, Sumigama S, Iwase A, Hirakawa A, Ohno K, Toyokuni S, Takeuchi H, Mizuno T, Suzumura A, Kikkawa F (2016) Neuroprotective potential of molecular hydrogen against perinatal brain injury via suppression of activated microglia. Free Radic Biol Med 91:154–63. https://doi.org/10.1016/j.freeradbiomed.2015.12.015

Article  CAS  PubMed  Google Scholar 

Ishikawa A, Yoshida H, Metoki N, Toki T, Imaizumi T, Matsumiya T, Yamashita K, Taima K, Satoh K (2007) Edaravone inhibits the expression of vascular endothelial grow

留言 (0)

沒有登入
gif