Induction of ferroptosis by photodynamic therapy and enhancement of antitumor effect with ferroptosis inducers

Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380–7.

Article  CAS  PubMed  Google Scholar 

Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA A Cancer J Clin. 2011. https://doi.org/10.3322/caac.20114.

Article  Google Scholar 

Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5:497–508.

Article  CAS  PubMed  Google Scholar 

Yano T, Minamide T, Takashima K, et al. Clinical practice of photodynamic therapy using talaporfin sodium for esophageal cancer. J Clin Med. 2021. https://doi.org/10.3390/jcm10132785.

Article  PubMed  PubMed Central  Google Scholar 

Yano T, Kasai H, Horimatsu T, et al. A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Oncotarget. 2017;8:22135–44.

Article  PubMed  Google Scholar 

Dang J, He H, Chen D, et al. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater Sci. 2017;5:1500–11.

Article  CAS  PubMed  Google Scholar 

Li RQ, Zhang C, Xie BR, et al. A two-photon excited O(2)-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials. 2019;194:84–93.

Article  PubMed  Google Scholar 

Liu LH, Zhang YH, Qiu WX, et al. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O(2) self-sufficient nanoplatform. Small. 2017. https://doi.org/10.1002/smll.201701621.

Article  PubMed  PubMed Central  Google Scholar 

Liu WL, Liu T, Zou MZ, et al. Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy. Adv Mater (Deerfield Beach, Fla). 2018;30:e1802006.

Article  Google Scholar 

Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 2017;28:218–29.

Article  CAS  PubMed  Google Scholar 

Carlson BA, Tobe R, Yefremova E, et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 2016;9:22–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guiney SJ, Adlard PA, Bush AI, et al. Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem Int. 2017;104:34–48.

Article  CAS  PubMed  Google Scholar 

Wu X, Li Y, Zhang S, et al. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11:3052–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417.

Article  PubMed  PubMed Central  Google Scholar 

Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

Article  PubMed  PubMed Central  Google Scholar 

Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76.

Article  CAS  PubMed  Google Scholar 

Zhu T, Shi L, Yu C, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. Theranostics. 2019;9:3293–307.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu T, Ma Y, Yuan Q, et al. enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano. 2020;14:3414–25.

Article  CAS  PubMed  Google Scholar 

Miotto G, Rossetto M, Di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28:101328.

Article  CAS  PubMed  Google Scholar 

Karuppagounder SS, Alin L, Chen Y, et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E(2) to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol. 2018;84:854–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slee EA, Zhu H, Chow SC, et al. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J. 1996. https://doi.org/10.1042/bj3150021.

Article  PubMed  PubMed Central  Google Scholar 

Mikuš P, Pecher D, Rauová D, et al. Determination of novel highly effective necrostatin Nec-1s in rat plasma by high performance liquid chromatography hyphenated with quadrupole-time-of-flight mass spectrometry. Molecules (Basel, Switzerland). 2018. https://doi.org/10.3390/molecules23081946.

Article  PubMed  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25:402–8.

Article  CAS  PubMed  Google Scholar 

Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014. https://doi.org/10.7554/eLife.02523.

Article  PubMed  PubMed Central  Google Scholar 

Sengupta A, Lichti UF, Carlson BA, et al. Targeted disruption of glutathione peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2. J Invest Dermatol. 2013;133:1731–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimomura T, Hirakawa N, Ohuchi Y, et al. Simple fluorescence assay for cystine uptake via the xCT in cells using selenocystine and a fluorescent probe. ACS Sensors. 2021;6:2125–8.

Article  CAS  PubMed  Google Scholar 

Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12:599–620.

Article  CAS  PubMed  Google Scholar 

Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol. 2002;1:1–21.

CAS  Google Scholar 

Aniogo EC, George BPA, Abrahamse H. Role of Bcl-2 family proteins in photodynamic therapy mediated cell survival and regulation. Molecules (Basel, Switzerland). 2020. https://doi.org/10.3390/molecules25225308.

Article  PubMed  Google Scholar 

Miki Y, Akimoto J, Moritake K, et al. Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers Med Sci. 2015;30:1739–45.

Article  PubMed  Google Scholar 

Song R, Li T, Ye J, et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv Mater (Deerfield Beach, Fla). 2021;33:e2101155.

Article  Google Scholar 

Zhou Y, Chen K, Lin WK, et al. Photo-enhanced synergistic induction of ferroptosis for anti-cancer immunotherapy. Adv Healthc Mater. 2023. https://doi.org/10.1002/adhm.202300994.

Article  PubMed  Google Scholar 

Chen Q, Ma X, Xie L, et al. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. Nanoscale. 2021;13:4855–70.

Article  CAS  PubMed  Google Scholar 

Plaetzer K, Kiesslich T, Krammer B, et al. Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol. 2002;1:172–7.

CAS  Google Scholar 

Hassannia B, Vandenabeele P, Vanden BT. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35:830–49.

Article  CAS 

留言 (0)

沒有登入
gif