THERMODYNAMIC ANALYSIS OF THE CLAUDE CYCLE FOR HYDROGEN LIQUIFICATION

Mazloomi, K., Gomes, C. (2012). Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 16, 3024–3033.

Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N., Ward, K. R. (2019). The role of hydrogen and fuel cells in the global energy system. Review. Energy Environ. Sci., 12, 463–491.

Mikul, H. (2021). Energy transition and the role of system integration of the energy, water and environmental systems. J. Clean. Prod., 292, 126027.

Yin, L., Ju, Y. (2020). Review on the design and optimization of hydrogen liquefaction processes. Front. Energy, 14, 530–544.

Zhang, T., Uratani, J., Huang Y., Xu L., Griffiths, S., Ding, Y. (2023). Hydrogen liquefaction and storage: Recent progress and perspectives. Renewable and Sustainable Energy Reviews, 176, 113204. https://doi.org/10.1016/j.rser.2023.113204

Krasaein, S., Stang, J. H., Neksa, P. (2010). Development of large-scale hydrogen liquefaction processes from 1898 to 2009. Int. J. Hydrogen Energy, 35, 4524–4533.

Zou, A., Zeng, Y., Luo, E. (2023). New generation hydrogen liquefaction technology by transonic two-phase expander. Energy, 272, 127150.

Aasadnia, M. Mehrpooya, M. (2018). Large-scale liquid hydrogen production methods and approaches: A review. Applied Energy, 212, 57–83. doi:10.1016/j.apenergy.2017.12.033.

Sadaghiani, Mirhadi S.; Mehrpooya, Mehdi (2017). Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy, 42(9), 6033–6050. doi:10.1016/j.ijhydene.2017.01.136

Zhang, S., Liu, G. (2022). Design and performance analysis of a hydrogen liquefaction process. Clean Technologies and Environmental Policy. 24, 51–65.

Decker, L. (2020). Latest Global Trend in Liquid Hydrogen Production, https://www.sintef.no/globalassets/project/hyper/presentations-day-1/day1_1430_decker_latest-global-trend-in-liquid-hydrogen-production_linde.pdf/.

Chang, H. M., Ryu, K. N.; Baik, J. H. (2018), Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator. Cryogenics, 91, 68–76.

Al Ghafri, S. Z., and al. (2022). Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities. (Review Article). Energy Environ. Sci., 15, 2690-2731. DOI: 10.1039/D2EE00099G

Drnevich, R. (2003). Hydrogen delivery – liquefaction & compression. Praxair, strategic initiatives for hydrogen delivery workshop – May 7, 2003. Available from: https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/liquefaction_comp_pres_praxair.pdf

IDEALHY – “Integrated Design for Efficient Advanced Liquefaction of Hydrogen”, Website: http://www.idealhy.eu/

Kravchenko, M. B. (2004). Analysis of thermodynamic cycles of low temperature units using q-1/T diagrams. Industrial gases. 2, 43-46. (in Russian)

Kravchenko, M. B. (2011). On the possibility of using a cryogenic cycle with a heat engine for liquefying natural gas. Refrigeration Engineering and Technology. 3 (131), 47-55. (in Russian)

Razani, A., Dodson, C. Fraser, T. (2012). Exergy-based figure of merit for regenerative and recuperative heat exchangers with application to multistage cryocoolers. Advances in Cryogenic Engineering AIP Conf. Proc. 1434, 1830-1838. doi: 10.1063/1.4707120

Maha, R., Marine, T., Florence, D., Jonathan, D., and Marian, C. (2020). Electrochemical hydrogen compression and purification versus competing technologies: Part II. Challenges in electrocatalysis. Chinese Journal of Catalysis. 41, 770–782

Ohlig, K., Decker, L (2014). The latest developments and outlook for hydrogen liquefaction technology. Proc. of the 20th World Hydrogen Energy Conference Gwangju.

Zhuzhgov, A. V., Krivoruchko, O. P., Isupova, L. A. et al. (2018). Low-Temperature Conversion of ortho-Hydrogen into Liquid para-Hydrogen: Process and Catalysts. Review. Catalysis in Industry. 10, 9–19. https://doi.org/10.1134/S2070050418010117

留言 (0)

沒有登入
gif