CHANGE IN THE MAIN INDICATORS OF OIL QUALITY IN THE OPERATION OF «AIRBUS HELICOPTERS H-145» HELICOPTERS

Rostek, E., Babiak, M. (2019). The experimental analysis of engine oil degradation utilizing selected thermoanalytical methods. Transportation Research Procedia, 40, 82–89. https://doi.org/10.1016/j.trpro.2019.07.014.

Bushell, K. W. (2003). Jet and Gas Turbine Engines. In R. A. Meyers Encyclopedia of Physical Science and Technology. New York, USA: Academic Press.

Wierzbicka, N., Szadkowska, D., Patalas, A., Talar, R., Łabudzki, R., Zawadzki, P. (2020). Evaluation of deterioration of engine oil properties in the function of mileage. J. Phys. Conf. Ser., 1426, 012004. https://doi.org/10.1088/1742-6596/1426/1/012004.

Hu, E., Liu, T., Song, R., Dearn, K., Xu, Y. (2013). Effect of TiF3 catalyst on the tribological properties of carbon black-contaminated engine oils. Wear., 305, 166–176. https://doi.org/10.1016/j.wear.2013.06.003.

Wolak, A., Zając, G. (2019). An Empirical Study of the Variables Affecting the Frequency of Engine Oil Change in the Environmental Aspect. Rocznik Ochrona Srodowiska. 21, 738–766.

Idzior, M. (2021) Aging of engine oils and their influence on the wear of an internal combustion engine. Combustion Engines. 185(2), 15–20. https://doi.org/10.19206/CE-138033.

Khamidullaevna, A.Z., Siddikov, F. (2022). The aging process of motor oils during operation. European international journal of multidisciplinary research and management studies. 2(6), 166–169. https://doi.org/10.55640/eijmrms-02-06-32.

Cai, Z. B., Zhou, Y., Qu, J. (2015). Effect of oil temperature on tribological behavior of a lubricated steel−steel contact. Wear., 332–333, 1158–1163. https://doi.org/10.1016/j.wear.2015.01.064.

Martini, A., Ramasamy, U.S., Len, M. (2018). Review of Viscosity Modifier Lubricant Additives. Tribol Lett. 66, 58. https://doi.org/10.1007/s11249-018-1007-0.

Thong, D., Hutchinson, P.A., Wincierz, C., Schimmel, T. (2014). Viscosity Modifiers. In: Mang, T. Encyclopedia of Lubricants and Lubrication. Berlin, Germany: Springer.

Méheust, H., Le Meins, J.-F., Grau, E., & Cramail, H. (2021). Bio-Based Polyricinoleate and Polyhydro-xystearate: Properties and Evaluation as Viscosity Modifiers for Lubricants. ACS Applied Polymer Materials. 3(2), 811–818. https://doi.org/10.1021/acsapm.0c01153.

Syabilah, S., Amit, R. N., Mohd, H. A., Zulkifli, N.W.M., Mohd, R. J., Wageeh, A. Y., Lee H. V. (2021). Semicarbazide and thiosemicarbazide containing butylated hydroxytoluene moiety: new potential antioxidant additives for synthetic lubricating oil. RSC Adv. 11(13), 7138–7145. https://doi.org/10.1039/d0ra10626g.

Alimova, Z. Kh., Abdurazzoqov, A. A., Yuldasheva, G. B. (2022). Improving the Anticorrosive Properties of Motor Oils by Adding Additives. Texas Journal of Engineering and Technology. 8, 16–19.

Nassar, A. M., Ahmed, N. S., Abdel-Hameed, H. S., El-Kafrawy, A. F. (2016). Synthesis and utilization of non-metallic detergent/dispersant and antioxidant additives for lubricating engine oil. Tribology International. 93, 297–305. https://doi.org/10.1016/j.triboint.2015.08.033.

Jiang, H., Hou, X., Ma, Y., Guan, W., Liu, H., Qian, Y. (2022). Elaboration of Ionic Liquids on the Anti-Wear Performance of the Reinforced Steel-Steel Contact Surface. Lubricants. 10, 260. https://doi.org/10.3390/lubricants10100260.

Hu, C., You, G., Liu, J., Du, S., Zhao, X., Wu, S. (2021). Study on the mechanisms of the lubricating oil antioxidants: Experimental and molecular simulation. Journal of Molecular Liquids. 324, 115099. https://doi.org/10.1016/j.molliq.2020.115099.

Airbus H145 helicopters https://www.airbus.com/en/products-services/helicopters/civil-helicopters/h145.

Sadineni, A., Ivvala, J., Sai, S. (2017). A review on the importance of viscosity in engine oils. Journal of Mechanical and Production Engineering (JMPE), 7(1). 10.

Wolak, A., Zając, G., Słowik, T. (2021). Measuring Kinematic Viscosity of Engine Oils: A Comparison of Data Obtained from Four Different Devices. Sensors. 21. 2530. https://doi.org/10.3390/s21072530.

Sikora, G., Miller, H. (2012). The analysis of changes in total base number and the flash point in the exploited engine oil. Journal of KONES Powertrain and Transport. 19(3), 395–398.

Wolak, A. (2018). TBN performance study on a test fleet in real-world driving conditions using present-day engine oils. Measurement. 114. 322–331. https://doi.org/10.1016/j.measurement.2017.09.044.

Chikunova, A.S., Vershinin, V.I. (2021). Determining the Total Base Number of Engine Oils Using Potentiometric Titration. Inorg Mater., 57, 1440–1446. https://doi.org/10.1134/S002016852114003X.

State Committee for Technical Regulation and Consumer Policy of Ukraine. (2008). [National standardization basic principles]. (DSTU 5094:2008). Kyiv, Derzhpozhyvstandart Ukraine (in Ukrainian).

ASTM International. (2015). ASTM D2896-15. Standard Test Method for Base Number of Petroleum Products by Potentiometric Perchloric Acid Titration.

ASTM International (2017). ASTM D4739-17, Standard Test Method for Base Number Determination by Potentiometric Hydrochloric Acid Titration.

Yefymenko V., Kalmykova N., Kravchuk T. (2022). Oils for gas turbine engines of «Airbus Helicopters H-145». The ХVIII International Scientific and Practical Conference «Advancing in research, practice and education», Florence, Italy, 585–590.

留言 (0)

沒有登入
gif