Antibacterial Mechanism of a Novel Peptide Dendrocin‑ZM1 Against Staphylococcus aureus by Increasing Membrane Permeability

Accorsi EK, Franzosa EA, Hsu T, Joice Cordy R, Maayan-Metzger A, Jaber H, Reiss-Mandel A, Kline M, Dulong C, Lipsitch M (2020) Determinants of Staphylococcus aureus carriage in the developing infant nasal microbiome. Genome Biol 21:1–24

Article  Google Scholar 

Assis LM, Nedeljković M, Dessen A (2017) New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 31:1–14

Article  PubMed  Google Scholar 

Cantor S, Vargas L, Rojas AOE, Yarce CJ, Salamanca CH, Oñate-Garzón J (2019) Evaluation of the antimicrobial activity of cationic peptides loaded in surface-modified nanoliposomes against foodborne bacteria. Int J Mol Sci 20:680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920

Article  CAS  PubMed Central  Google Scholar 

Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim et Biophys Acta (BBA)-Biomembranes 1758(9):1184–1202

Article  CAS  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI) (2023) Performance standards for antimicrobial susceptibility testing; 33th informational supplement. CLSI document M100 (ISBN 978-1-67440-171-0)

Google Scholar 

Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Mietzner TA, Montelaro RC (2013) Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother 57(6):2511–2521

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong N, Zhu X, Chou S, Shan A, Li W, Jiang J (2014) Antimicrobial potency and selectivity of simplified symmetric-end peptides. Biomaterials 35:8028–8039

Article  CAS  PubMed  Google Scholar 

Erdem Büyükkiraz M, Kesmen Z (2022) Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 132:1573–1596

Article  PubMed  Google Scholar 

Gongora-Benitez M, Tulla-Puche J, Albericio F (2013) Handles for Fmoc solid-phase synthesis of protected peptides. ACS Comb Sci 15:217–228

Article  CAS  PubMed  Google Scholar 

Guo Y, Song G, Sun M, Wang J, Wang Y (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol 10:107

Article  PubMed  PubMed Central  Google Scholar 

Huang HW, Charron NE (2017) Understanding membrane-active antimicrobial peptides. Q Rev Biophys 50:e10

Article  PubMed  Google Scholar 

Joshi S, Bisht GS, Rawat DS, Kumar A, Kumar R, Maiti S, Pasha S (2010) Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Biochim Biophys Acta – Biomembr 1798:1864–1875

Article  CAS  Google Scholar 

Kluytmans J, Wertheim H (2005) Nasal carriage of Staphylococcus aureus and prevention of nosocomial Infections. Infection 33:3–8

Article  CAS  PubMed  Google Scholar 

Kwon JY, Kim MK, Mereuta L, Seo CH, Luchian T, Park Y (2019) Mechanism of action of antimicrobial peptide P5 truncations against Pseudomonas aeruginosa and Staphylococcus aureus. AMB Express 9:1–15

Article  Google Scholar 

Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11:3919

CAS  PubMed  PubMed Central  Google Scholar 

Luo Y, Song Y (2021) Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci 22:11401

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park IY, Cho JH, Kim KS, Kim YB, Kim MS, Kim SC (2004) Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem 279:13896–13901

Article  CAS  PubMed  Google Scholar 

Qian Y, Qi F, Chen Q, Zhang Q, Qiao Z, Zhang S, Wei T, Yu Q, Yu S, Mao Z (2018) Surface modified with a host defense peptide-mimicking β-peptide polymer kills bacteria on contact with high efficacy. ACS Appl Mater Interfaces 10:15395–15400

Article  CAS  PubMed  Google Scholar 

Rasul R, Cole N, Balasubramanian D, Chen R, Kumar N, Willcox M (2010) Interaction of the antimicrobial peptide melimine with bacterial membranes. Int J Antimicrob Agents 35:566–572

Article  CAS  PubMed  Google Scholar 

Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T (2021) Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics 10:1095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O (2018) Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent Infections. Front Microbiol 9:2419

Article  PubMed  PubMed Central  Google Scholar 

Seyedjavadi SS, Razzaghi-Abyaneh M, Nasiri MJ, Hashemi A, Goudarzi H, Haghighi M, Dadashi M, Goudarzi M, Zare-Zardini H, Pourhossein B (2022) Isolation and chemical characterization of an alpha-helical peptide, dendrocin-ZM1, derived from zataria multiflora boiss with potent antibacterial activity. Probiotics Antimicrob Proteins 14:326–336

Article  CAS  PubMed  Google Scholar 

Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus Infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Zhao X, Xia X, Zhu C, Qin W, Xu Y, Hang B, Sun Y, Chen S, Zhang H (2019) Antimicrobial peptide JH-3 effectively kills Salmonella enterica Serovar Typhimurium strain CVCC541 and reduces its pathogenicity in mice. Probiotics Antimicrob Proteins 11:1379–1390

Article  CAS  PubMed  Google Scholar 

Wang L, Zhao X, Zhu C, Zhao Y, Liu S, Xia X, Liu X, Zhang H, Xu Y, Hang B (2020) The antimicrobial peptide MPX kills Actinobacillus pleuropneumoniae and reduces its pathogenicity in mice. Vet Microbiol 243:108634

Article  CAS  PubMed  Google Scholar 

Wu Q, Sabokroo N, Wang Y, Hashemian M, Karamollahi S, Kouhsari E (2021) Systematic review and meta-analysis of the epidemiology of Vancomycin-resistance Staphylococcus aureus isolates. Antimicrob Resist Infect Control 10:1–13

Article  Google Scholar 

留言 (0)

沒有登入
gif