Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies

Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. & Christensen, S. T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199–219 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Carrisoza-Gaytan, R., Carattino, M. D., Kleyman, T. R. & Satlin, L. M. An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am. J. Physiol. Cell Physiol. 310, C243–C259 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Satir, P., Pedersen, L. B. & Christensen, S. T. The primary cilium at a glance. J. Cell Sci. 123, 499–503 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benmerah, A. The ciliary pocket. Curr. Opin. Cell Biol. 25, 78–84 (2013).

Article  CAS  PubMed  Google Scholar 

Nachury, M. V. The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol. 51, 124–131 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia-Gonzalo, F. R. & Reiter, J. F. Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9, a028134 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Wingfield, J. L., Lechtreck, K.-F. & Lorentzen, E. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem. 62, 753–763 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Naharros, I. O. & Nachury, M. V. Shedding of ciliary vesicles at a glance. J. Cell Sci. 135, jcs246553 (2022).

Article  CAS  Google Scholar 

Park, K. & Leroux, M. R. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep. 23, e55420 (2022).

Article  CAS  PubMed  Google Scholar 

Carter, S. P. & Blacque, O. E. Membrane retrieval, recycling and release pathways that organise and sculpt the ciliary membrane. Curr. Opin. Cell Biol. 59, 133–139 (2019).

Article  CAS  PubMed  Google Scholar 

Long, H. & Huang, K. Transport of ciliary membrane proteins. Front. Cell Dev. Biol. 7, 381 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Waters, A. M. & Beales, P. L. Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26, 1039–1056 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lambacher, N. J. et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 18, 122–131 (2016).

Article  CAS  PubMed  Google Scholar 

Schouteden, C., Serwas, D., Palfy, M. & Dammermann, A. The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans. J. Cell Biol. 210, 35–44 (2015).

Article  CAS  PubMed  Google Scholar 

Trépout, S., Tassin, A.-M., Marco, S. & Bastin, P. STEM tomography analysis of the trypanosome transition zone. J. Struct. Biol. 202, 51–60 (2018).

Article  PubMed  Google Scholar 

van den Hoek, H. et al. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 377, 543–548 (2022).

Article  PubMed  Google Scholar 

Gilula, N. B. & Satir, P. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53, 494–509 (1972).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kee, H. L. et al. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431–437 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breslow, D. K., Koslover, E. F., Seydel, F., Spakowitz, A. J. & Nachury, M. V. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Endicott, S. J. & Brueckner, M. NUP98 sets the size-exclusion diffusion limit through the ciliary base. Curr. Biol. 28, 1643–1650 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, Y.-C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437–443 (2013).

Article  CAS  PubMed  Google Scholar 

Najafi, M., Maza, N. A. & Calvert, P. D. Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc. Natl Acad. Sci. USA 109, 203–208 (2012).

Article  CAS  PubMed  Google Scholar 

Takao, D. et al. An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry. Curr. Biol. 24, 2288–2294 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dishinger, J. F. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol. 12, 703–710 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hurd, T. W., Fan, S. & Margolis, B. L. Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2. J. Cell Sci. 124, 718–726 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, Y. et al. Regulation of Gli ciliary localization and Hedgehog signaling by the PY-NLS/karyopherin-β2 nuclear import system. PLoS Biol. 15, e2002063 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Funabashi, T. et al. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal. Mol. Biol. Cell 28, 624–633 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Del Viso, F. et al. Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev. Cell 38, 478–492 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Endicott, S. J., Basu, B., Khokha, M. & Brueckner, M. The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left-right asymmetry. Development 142, 4068–4079 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Takao, D., Wang, L., Boss, A. & Verhey, K. J. Protein interaction analysis provides a map of the spatial and temporal organization of the ciliary gating zone. Curr. Biol. 27, 2296–2306.e3 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blasius, T. L., Takao, D. & Verhey, K. J. NPHP proteins are binding partners of nucleoporins at the base of the primary cilium. PLoS ONE 14, e0222924 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776–784 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61–72 (2011).

Article  PubMed  Google Scholar 

Williams, C. L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif