Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. & Christensen, S. T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199–219 (2019).
Article PubMed PubMed Central Google Scholar
Carrisoza-Gaytan, R., Carattino, M. D., Kleyman, T. R. & Satlin, L. M. An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am. J. Physiol. Cell Physiol. 310, C243–C259 (2016).
Article PubMed PubMed Central Google Scholar
Satir, P., Pedersen, L. B. & Christensen, S. T. The primary cilium at a glance. J. Cell Sci. 123, 499–503 (2010).
Article CAS PubMed PubMed Central Google Scholar
Benmerah, A. The ciliary pocket. Curr. Opin. Cell Biol. 25, 78–84 (2013).
Article CAS PubMed Google Scholar
Nachury, M. V. The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol. 51, 124–131 (2018).
Article CAS PubMed PubMed Central Google Scholar
Garcia-Gonzalo, F. R. & Reiter, J. F. Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9, a028134 (2017).
Article PubMed PubMed Central Google Scholar
Wingfield, J. L., Lechtreck, K.-F. & Lorentzen, E. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem. 62, 753–763 (2018).
Article PubMed PubMed Central Google Scholar
Naharros, I. O. & Nachury, M. V. Shedding of ciliary vesicles at a glance. J. Cell Sci. 135, jcs246553 (2022).
Park, K. & Leroux, M. R. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep. 23, e55420 (2022).
Article CAS PubMed Google Scholar
Carter, S. P. & Blacque, O. E. Membrane retrieval, recycling and release pathways that organise and sculpt the ciliary membrane. Curr. Opin. Cell Biol. 59, 133–139 (2019).
Article CAS PubMed Google Scholar
Long, H. & Huang, K. Transport of ciliary membrane proteins. Front. Cell Dev. Biol. 7, 381 (2020).
Article PubMed PubMed Central Google Scholar
Waters, A. M. & Beales, P. L. Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26, 1039–1056 (2011).
Article PubMed PubMed Central Google Scholar
Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).
Article CAS PubMed PubMed Central Google Scholar
Lambacher, N. J. et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 18, 122–131 (2016).
Article CAS PubMed Google Scholar
Schouteden, C., Serwas, D., Palfy, M. & Dammermann, A. The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans. J. Cell Biol. 210, 35–44 (2015).
Article CAS PubMed Google Scholar
Trépout, S., Tassin, A.-M., Marco, S. & Bastin, P. STEM tomography analysis of the trypanosome transition zone. J. Struct. Biol. 202, 51–60 (2018).
van den Hoek, H. et al. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 377, 543–548 (2022).
Gilula, N. B. & Satir, P. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53, 494–509 (1972).
Article CAS PubMed PubMed Central Google Scholar
Kee, H. L. et al. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431–437 (2012).
Article CAS PubMed PubMed Central Google Scholar
Breslow, D. K., Koslover, E. F., Seydel, F., Spakowitz, A. J. & Nachury, M. V. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147 (2013).
Article PubMed PubMed Central Google Scholar
Endicott, S. J. & Brueckner, M. NUP98 sets the size-exclusion diffusion limit through the ciliary base. Curr. Biol. 28, 1643–1650 (2018).
Article CAS PubMed PubMed Central Google Scholar
Lin, Y.-C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437–443 (2013).
Article CAS PubMed Google Scholar
Najafi, M., Maza, N. A. & Calvert, P. D. Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. Proc. Natl Acad. Sci. USA 109, 203–208 (2012).
Article CAS PubMed Google Scholar
Takao, D. et al. An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry. Curr. Biol. 24, 2288–2294 (2014).
Article CAS PubMed PubMed Central Google Scholar
Dishinger, J. F. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol. 12, 703–710 (2010).
Article CAS PubMed PubMed Central Google Scholar
Hurd, T. W., Fan, S. & Margolis, B. L. Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2. J. Cell Sci. 124, 718–726 (2011).
Article CAS PubMed PubMed Central Google Scholar
Han, Y. et al. Regulation of Gli ciliary localization and Hedgehog signaling by the PY-NLS/karyopherin-β2 nuclear import system. PLoS Biol. 15, e2002063 (2017).
Article PubMed PubMed Central Google Scholar
Funabashi, T. et al. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal. Mol. Biol. Cell 28, 624–633 (2017).
Article CAS PubMed PubMed Central Google Scholar
Del Viso, F. et al. Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev. Cell 38, 478–492 (2016).
Article PubMed PubMed Central Google Scholar
Endicott, S. J., Basu, B., Khokha, M. & Brueckner, M. The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left-right asymmetry. Development 142, 4068–4079 (2015).
CAS PubMed PubMed Central Google Scholar
Takao, D., Wang, L., Boss, A. & Verhey, K. J. Protein interaction analysis provides a map of the spatial and temporal organization of the ciliary gating zone. Curr. Biol. 27, 2296–2306.e3 (2017).
Article CAS PubMed PubMed Central Google Scholar
Blasius, T. L., Takao, D. & Verhey, K. J. NPHP proteins are binding partners of nucleoporins at the base of the primary cilium. PLoS ONE 14, e0222924 (2019).
Article CAS PubMed PubMed Central Google Scholar
Garcia-Gonzalo, F. R. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776–784 (2011).
Article CAS PubMed PubMed Central Google Scholar
Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).
Article CAS PubMed PubMed Central Google Scholar
Chih, B. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61–72 (2011).
Williams, C. L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011).
Comments (0)