Clonal haematopoiesis, ageing and kidney disease

Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

Article  CAS  PubMed  Google Scholar 

Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

Article  CAS  PubMed  Google Scholar 

Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

Article  CAS  PubMed  Google Scholar 

Mustjoki, S. & Young, N. S. Somatic mutations in “benign” disease. N. Engl. J. Med. 384, 2039–2052 (2021).

Article  CAS  PubMed  Google Scholar 

Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376, 1835–1848 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

Article  CAS  PubMed  Google Scholar 

Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niroula, A. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat. Med. 27, 1921–1927 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, A. et al. Population analyses of mosaic X chromosome loss identify genetic drivers and widespread signatures of cellular selection. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2023.01.28.23285140v1 (2023).

Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haitjema, S. et al. Loss of Y chromosome in blood is associated with major cardiovascular events during follow-up in men after carotid endarterectomy. Circ. Cardiovasc. Genet. 10, e001544 (2017).

Article  CAS  PubMed  Google Scholar 

Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vlasschaert, C., Moran, S. M. & Rauh, M. J. The myeloid–kidney interface in health and disease. CJASN 17, 323–331 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

Article  PubMed  Google Scholar 

Zhang, H., Weyand, C. M. & Goronzy, J. J. Hallmarks of the aging T-cell system. FEBS J. 288, 7123–7142 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Mol, J., Kuiper, J., Tsiantoulas, D. & Foks, A. C. The dynamics of B cell aging in health and disease. Front. Immunol. 12, 733566 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

Article  CAS  PubMed  Google Scholar 

Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buscarlet, M. et al. Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood 132, 277–280 (2018).

Article  CAS  PubMed  Google Scholar 

Arends, C. M. et al. Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia 32, 1908–1919 (2018).

Article  CAS  PubMed  Google Scholar 

Fuster, J. J. et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep. 33, 108326 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nam, A. S. et al. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat. Genet. 54, 1514–1526 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cull, A. H., Snetsinger, B., Buckstein, R., Wells, R. A. & Rauh, M. J. Tet2 restrains inflammatory gene expression in macrophages. Exp. Hematol. 55, 56–70.e13 (2017).

Article  CAS 

留言 (0)

沒有登入
gif