Strigolactone analogue GR24 mediated somatic embryogenesis from leaf tissues of Santalum album L

Akhtar R, Shahzad A (2019) Morphology and ontogeny of directly differentiating shoot buds and somatic embryos in Santalum album L. J for Res 30:1179–1189. https://doi.org/10.1007/s11676-018-0679-5

Article  CAS  Google Scholar 

Alvi AF, Sehar Z, Fatma M, Masood A, Khan NA (2022) Strigolactone: an emerging growth regulator for developing resilience in plants. Plants 11:2604. https://doi.org/10.3390/plants11192604

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029. https://doi.org/10.1111/j.1365-313X.2007.03210.x

Article  CAS  PubMed  Google Scholar 

Arunkumar AN, Dhyani A, Joshi G (2019) Santalum album. The IUCN red list of threatened species 2019: e.T31852A2807668. https://doi.org/10.2305/IUCN.UK.2019-1.RLTS.T31852A2807668.en. Accessed on 23 May 2023

Baldovini N, Delasalle C, Joulain D (2011) Phytochemistry of the heartwood from fragrant Santalum species: a review. Flavour Fragr J 26:7–26. https://doi.org/10.1002/ffj.2025

Article  CAS  Google Scholar 

Bele D, Tripathi MK, Tiwari G, Baghel BS, Tiwari S (2012) Microcloning of sandalwood (Santalum album Linn.) from cultured leaf discs. J Agric Technol 8:571–583

Google Scholar 

Bhargava P, Ravindra N, Singh G (2018) A modified and improved protocol development for in vitro clonal propagation of Santalumalbum L. from internodal explants. Trop Plant Res 5:193–199. https://doi.org/10.22271/tpr.2018.v5.i2.024

Article  Google Scholar 

Bogdanović MD, Ćuković KB, Subotić AR, Dragićević MB, Simonović AD, Filipović BK, Todorović SI (2021) Secondary somatic embryogenesis in Centaurium erythraea Rafn. Plants 10. https://doi.org/10.3390/plants10020199

Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C (2013) Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep 32:675–686. https://doi.org/10.1007/s00299-013-1402-9

Article  CAS  PubMed  Google Scholar 

Das S, Ray S, Dey S, Dasgupta S (2001) Optimisation of sucrose, inorganic nitrogen and abscisic acid levels for Santalum album L. somatic embryo production in suspension culture. Process Biochem 37:51–56. https://doi.org/10.1016/S0032-9592(01)00168-6

Article  CAS  Google Scholar 

Desai P, Desai S, Rafaliya R, Patil G (2022) Plant tissue culture: somatic embryogenesis and organogenesis. In: Rai AC, Kumar A, Modi A, Singh M (eds) Advances in plant tissue culture: current developments and future trends. Academic Press 109–130. https://doi.org/10.1016/B978-0-323-90795-8.00006-0

Dixit J, Saini R, Mishra AK, Verma P, Kumar P, Tiwari KN (2022) Somatic embryogenesis in medicinal plants. In: Rai AC, Kumar A, Modi A, Singh M (eds) Advances in plant tissue culture: current developments and future trends. Academic Press. 223–258. https://doi.org/10.1016/B978-0-323-90795-8.00007-2

Duan J, Yu H, Yuan K, Liao Z, Meng X, Jing Y, Liu G, Chu J, Li J (2019) Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proceed Nat Acad Sci 116:14319–14324. https://doi.org/10.1073/pnas.1810980116

Article  CAS  Google Scholar 

Dun EA, de Saint GA, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498. https://doi.org/10.1104/pp.111.186783

Article  CAS  PubMed  Google Scholar 

Dutt S, Verma KS (2005) Effect of collection of time, pre-sowing treatments and sowing time on the germinability of sandal (Santalum album L) seeds under nursery conditions. J Non-Timber For Prod 12:205–208. https://doi.org/10.22271/chemi.2020.v8.i4o.9830

Article  CAS  Google Scholar 

Elhiti M, Mira MM, So KKY, Stasolla C, Hebelstrup KH (2021) Synthetic strigolactone GR24 improves Arabidopsis somatic embryogenesis through changes in auxin responses. Plants 10:2720. https://doi.org/10.3390/plants10122720

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fehér A (2005) Why somatic plant cells start to form embryos? In: Mujib A, Šamaj J (eds) Somatic embryogenesis. Plant Cell Monographs, vol 2. Springer, Berlin, Heidelberg. 85–101. https://doi.org/10.1007/7089_019

Globe news wire (2023) Sandalwood oil market analysis by product (natural, lab-created), by application (personal care, aromatherapy, pharmaceuticals), by region – global market insights 2023–2023. https://www.globenewswire.com/en/news-release/2023/03/01/2618166/0/en/Sandalwood-Oil-Demand-Rising-in-Natural-Cosmetics-Helps-the-Industry-to-Attain-USD-188-Million-by-2033-States-Fact-MR.html. Accessed on 13 April, 2023

Grobbelaar MC, Makunga NP, Stande MA, Jens K, Paul NH (2014) Effect of strigolactones and auxins on growth and metabolite content of Sutherlandia frutescens (L.) R. Br. microplants in vitro. Plant Cell Tiss Org Cult 117:401–409. https://doi.org/10.1007/s11240-014-0449-9

Article  CAS  Google Scholar 

Grzyb M, Mikuła A (2019) Explant type and stress treatment determine the uni- and multicellular origin of somatic embryos in the tree fern Cyathea delgadii Sternb. Plant Cell Tiss Org Cult 136:221–230. https://doi.org/10.1007/s11240-018-1507-5

Article  CAS  Google Scholar 

Gupta S (2023) Sandalwood oil market research report by type (natural and synthetic), application (personal care, pharmaceuticals, aromatherapy and others), and region (North America, Europe, Asia-Pacific, and rest of the world) – forecast till 2027. https://www.marketresearchfuture.com/reports/sandalwood-oil-market-4626. Accessed on 13 April, 2023

Herawan T, Na’iem M, Indrioko S, Indrianto A (2014) Somatic embryogenesis of sandalwood (Santalum album L.). Indones J Biotechnol 19:168–175. https://doi.org/10.22146/ijbiotech.9311

Article  Google Scholar 

IUCN (2012) Asian Regional Workshop (Conservation Sustainable Management of Trees, Viet Nam, August 1996) Santalum album. In: IUCN red list of threatened species. Version 2012.2. www.iucnredlist.org. Accessed on 20 April, 2023

Khande BP, Burondkar MM, Sawardekar SV, Chavan SS, Gokhale NB, Bhave SG, Shinde AK, Devmore JP (2017) Effect of media combination on in vitro callus induction in sandalwood (Santalum album L.). Adv Agri Res Technol J 1:98–105

Google Scholar 

Koltai H (2015) Cellular events of strigolactone signalling and their crosstalk with auxin in roots. J Exp Bot 66:4855–4861. https://doi.org/10.1093/jxb/erv178

Article  CAS  PubMed  Google Scholar 

Krasylenko Y, Komis G, Hlynska S, Vavrdová T, Ovečka M, Pospíšil T, Šamaj J (2021) GR24, a synthetic strigolactone analog, and light affect the organization of cortical microtubules in Arabidopsis hypocotyl cells. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.675981

Krishnakumar N, Parthiban KT (2018) Micropropagation (in vitro) techniques for sandal wood (Santalum album L.). J Pharmacog Phytochem 7:620–627

CAS  Google Scholar 

Long Y, Yang Y, Pan G, Shen Y (2022) New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.926752

Manandhar S, Funnell KA, Woolley DJ, Cooney JM (2018) Interaction between strigolactone and cytokinin on axillary and adventitious bud development in Zantedeschia. J Plant Physiol Pathol 6:1. https://doi.org/10.4172/2329-955X.1000172

Article  Google Scholar 

Manokari M, Mehta SR, Priyadharshini S, Badhepuri MK, Jayaprakash K, Cokul Raj M, Shekhawat MS (2022) Histochemical basis of the distinct anatomical features and characterization of primary and secondary metabolites during somatic embryogenesis in Santalum album L. Trees 36:215–226. https://doi.org/10.1007/s00468-021-02199-4

Article  CAS  Google Scholar 

Manokari M, Mehta SR, Priyadharshini S, Badhepuri MK, Sandhya D, Jayaprakash K, Cokul Raj M, Dey A, Rajput BS, Shekhawat MS (2021) Meta-Topolin mediated improved micropropagation, foliar micro-morphological traits, biochemical profiling, and assessment of genetic fidelity in Santalum album L. Ind Crops Prod 171:113931. https://doi.org/10.1016/j.indcrop.2021.113931

Article  CAS  Google Scholar 

Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T (2009) Feedback-regulation of strigolactone biosynthetic genes and strigolactone-related genes in Arabidopsis. Biosci Biotechnol Biochem 73:2460–2465. https://doi.org/10.1271/bbb.90443

Article  CAS  PubMed  Google Scholar 

Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, Loyola-Vargas VM (2019) Signaling overview of plant somatic embryogenesis. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00077

Misra BB, Dey S (2013) Culture of East Indian sandalwood tree somatic embryos in air-lift bioreactors for production of santalols, phenolics and arabinogalactan proteins. AoB Plants 5. https://doi.org/10.1093/aobpla/plt025

Moy RL, Levenson C (2017) Sandalwood album oil as a botanical therapeutic in dermatology. J Clin Aesthet Dermatol 10:34–39. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749697. Accessed 11 Apr 2023

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Article  CAS  Google Scholar 

Nic-Can GI, Loyola-Vargas VM (2016) The role of the auxins during somatic embryogenesis. In: Loyola-Vargas V, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer Cham. 171–182. https://doi.org/10.1007/978-3-319-33705-0_10

Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00434

Peeris M, Senarath W (2015) In vitro propagation of Santalum album L. J Nat Sci Found Sri Lanka 43:265–272. https://doi.org/10.4038/jnsfsr.v43i3.7954

Article  CAS  Google Scholar 

Pilarska M, Malec P, Salaj J, Bartnicki F, Konieczny R (2016) High expression of somatic embryogenesis receptor-like kinase coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens. Protoplasma 253:345–355. https://doi.org/10.1007/s00709-015-0814-5

Article  CAS  PubMed  Google Scholar 

Puigderrajols P (2001) Ultrastructure of early secondary embryogenesis by multicellular and unicellular pathways in cork oak (Quercus suber L.). Ann Bot 87:179–189. https://doi.org/10.1006/anbo.2000.1317

Article  PubMed  Google Scholar 

Rao KS, Chrungoo NK, Sinha A (1996) Characterization of somatic embryogenesis in sandalwood (Santalum album L.). In Vitro Cell Dev Biol - Plant 32:123–128. https://doi.org/10.2307/20064893

Article  Google Scholar 

Rao PS, Bapat VA (1995) Somatic embryogenesis in sandalwood (Santalum album L.). In: Jain SM, Gupta PK, Newton RJ (eds.) Somatic embryogenesis in woody plants. Forest Sci 44(1):153–170

Article  Google Scholar 

Rashkow ED (2014) Perfumed the axe that laid it low: the endangerment of sandalwood in southern India. Indian Econ Soc Hist Rev 51:41–70. https://doi.org/10.1177/0019464613515553

Article  Google Scholar 

Rugkhla A, Jones MG (1998) Somatic embryogenesis and plantlet formation in Santalum album and S. spicatum. J Exp Bot 49:563–571. https://doi.org/10.1093/jxb/49.320.563

Article  CAS  Google Scholar 

Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Antonio J, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734. https://doi.org/10.1104/pp.110.166645

Article  CAS  PubMed  Google Scholar 

Sandeep C, Kumar A, Rodrigues V, Viswanath S, Shukla AK, Sundaresan V (2020) Morpho-genetic divergence and population structure in Indian Santalum album L. Trees 34:1113–1129. https://doi.org/10.1007/s00468-020-01963-2

Article  CAS  Google Scholar 

Sandeep C, Manohara TN (2019) Sandalwood in India: historical and cultural significance of Santalum album L. as a basis for its conservation. NeBIO 10:235–241

留言 (0)

沒有登入
gif