A facile Agrobacterium-mediated transformation method for the model unicellular green algae Chlamydomonas reinhardtii

Akella S, Ma X, Bacova R, Harmer ZP, Kolackova M, Wen X, Wright DA, Spalding MH, Weeks DP, Cerutti H (2021) Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas. Plant Physiol 187:2637–2655

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bateman JM, Purton S (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet 263:404–410

Article  CAS  PubMed  Google Scholar 

Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35s promoter: combinatorial regulation of transcription in plants. Science 250:959–966

Article  CAS  PubMed  Google Scholar 

Casas-Mollano JA, Jeong BJ, Xu J, Moriyama H, Cerutti H (2008) The MUT9p kinase phosphorylates histone H3 threonine 3 and is necessary for heritable epigenetic silencing in Chlamydomonas. Proc Natl Acad Sci USA 105:6486–6491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9:925–945

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN, Fauquet C (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 10:1060–1064

Article  Google Scholar 

Chen R, Matsui K, Ogawa M, Oe M, Ochiai M, Kawashima H, Sakuradani E, Shimizu S, Ishimoto M, Hayashi M, Murooka Y, Tanaka Y (2006) Expression of ∆6, ∆5 desaturase and GLELO elongase genes from Mortierella alpina for the production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci 170:399–406

Article  CAS  Google Scholar 

Cheng ZQ, Huang XQ, Wu R (2001) Comparison of biolistic and Agrobacterium-mediated transformation methods on transgene copy number and rearrangement frequency in rice. Acta Bot Sinica 43:826–833

CAS  Google Scholar 

Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breeding 7:25–33

Article  CAS  Google Scholar 

Dal’Molin CG, Quek L, Palfreyman RW, Nielsen LK (2011) AlgaGEM- a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12(Suppl 14):S15

Google Scholar 

Davies JP, Grossman AR (1994) Sequences controlling transcription of the Chlamydomonas reinhardtii ß2-tubulin gene after deflagellation and during the cell cycle. Mol Cell Biol 14:5165–5174

CAS  PubMed  PubMed Central  Google Scholar 

Day A, Debuchy R, van Dillewijn J, Purton S, Rochaix JD (1990) Studies on the maintenance and expression of cloned DNA fragments in the nuclear genome of the green alga Chlamydomonas reinhardtii. Physiol Plant 78:254–260

Article  CAS  Google Scholar 

Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Reptr 1:19–21

Article  CAS  Google Scholar 

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunahay G (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15:457–460

Google Scholar 

Eckert H, LaVallee B, Schweiger BJ, Kinney AJ, Cahoon EB, Clemente T (2006) Co-expression of the borage ∆6 desaturase and the Arabidopsis ∆15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224:1050–1057

Article  CAS  PubMed  Google Scholar 

Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc Natl Acad Sci USA 114:13567–13572

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265:888–894

Article  CAS  PubMed  Google Scholar 

Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas reinhardtii. Curr Opin Plant Biol 7:159–165

Article  CAS  PubMed  Google Scholar 

Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361

Article  CAS  PubMed  Google Scholar 

Fullner KJ, Nester EW (1996) Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178:1498–1504

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gelvin SB, Lee LY (2021) Methods and composition for transferring T-DNA into plant. USA Patent Application Number 17(494):977

Google Scholar 

Ghribi M, Nouemssi SB, Meddeb-Mouelhi F, Desgagné-Penix I (2020) Genome editing by CRISPR-Cas: a game change in the genetic manipulation of Chlamydomonas. Life 10:295

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, de Montaigu A, Higuera JJ, Prior M, Galván A, Fernandez E, Grossman AR (2011) Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7:1–13

Article  Google Scholar 

Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzmán-Zapata D, Sandoval-Vargas JM, Macedo-Osorio KS, Salgado-Manjarrez E, Castrejón-Flores JL, Oliver-Salvador MDC, Durán-Figueroa NV, Nogué F, Badillo-Corona JA (2019) Efficient editing of the nuclear APT reporter gene in Chlamydomonas reinhardtii via expression of a CRISPR-Cas9 module. Int J Mol Sci 20:1247

Article  PubMed  PubMed Central  Google Scholar 

Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

Article  CAS  PubMed  Google Scholar 

Hanikenne M (2003) Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis. New Phytol 159:331–340

Article  CAS  PubMed  Google Scholar 

Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

Article  CAS  PubMed  Google Scholar 

Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort R (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

Article  CAS  Google Scholar 

Jeong BJ, Wu-Scharf D, Zhang C, Cerutti H (2002) Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactive transposable elements. Proc Natl Acad Sci USA 99:1076–1081

Article  CAS  PubMed Central  Google Scholar 

Kim J, Lee S, Baek K, Jin ES (2020) Site-specific knock-out and on-site heterologous gene overexpression in Chlamydomonas reinhardtii via a CRISPR-Cas9-mediated knock-in method. Front Plant Sci 11:306. https://doi.org/10.3389/fpls.2020.00306

Article  PubMed  PubMed Central  Google Scholar 

Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88:1721–1725

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

Article  CAS  Google Scholar 

Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

Article  CAS  Google Scholar 

Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

Article

留言 (0)

沒有登入
gif