Mitochondrial dysfunction in Parkinson’s disease – a key disease hallmark with therapeutic potential

Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397:2284–303.

Article  CAS  PubMed  Google Scholar 

Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30:1591–601.

Article  PubMed  Google Scholar 

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.

Article  PubMed  Google Scholar 

Chaudhuri KR, Healy DG, Schapira AH. National Institute for clinical E: non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 2006;5:235–45.

Article  PubMed  Google Scholar 

Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci. 2017;18:101–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koga S, Sekiya H, Kondru N, Ross OA, Dickson DW. Neuropathology and molecular diagnosis of Synucleinopathies. Mol Neurodegener. 2021;16:83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24:197–211.

Article  PubMed  Google Scholar 

Doppler K, Jentschke HM, Schulmeyer L, Vadasz D, Janzen A, Luster M, et al. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson's disease. Acta Neuropathol. 2017;133:535–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henderson MX, Henrich MT, Geibl FF, Oertel WH, Brundin P, Surmeier DJ. The roles of connectivity and neuronal phenotype in determining the pattern of alpha-synuclein pathology in Parkinson's disease. Neurobiol Dis. 2022;168:105687.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giguere N, Burke Nanni S, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson's disease. Front Neurol. 2018;9:455.

Article  PubMed  PubMed Central  Google Scholar 

Kalia LV, Lang AE. Parkinson's disease. Lancet. 2015;386:896–912.

Article  CAS  PubMed  Google Scholar 

Hirsch EC, Standaert DG. Ten unsolved questions about Neuroinflammation in Parkinson's disease. Mov Disord. 2021;36:16–24.

Article  PubMed  Google Scholar 

Sahoo S, Padhy AA, Kumari V, Mishra P. Role of ubiquitin-proteasome and autophagy-lysosome pathways in alpha-Synuclein aggregate clearance. Mol Neurobiol. 2022;59:5379–407.

Article  CAS  PubMed  Google Scholar 

Wong YC, Luk K, Purtell K, Burke Nanni S, Stoessl AJ, Trudeau LE, et al. Neuronal vulnerability in Parkinson disease: should the focus be on axons and synaptic terminals? Mov Disord. 2019;34:1406–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yellen G. Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol. 2018;217:2235–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20:745–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakrabarty RP, Chandel NS. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell. 2021;28:394–408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci. 2009;29:444–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S. Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J Clin Invest. 2019;129:34–45.

Article  PubMed  PubMed Central  Google Scholar 

Lewis TL Jr, Kwon SK, Lee A, Shaw R, Polleux F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat Commun. 2018;9:5008.

Article  PubMed  PubMed Central  Google Scholar 

Bolam JP, Pissadaki EK. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord. 2012;27:1478–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE. Elevated mitochondrial bioenergetics and axonal Arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol. 2015;25:2349–60.

Article  CAS  PubMed  Google Scholar 

Martinez-Gonzalez C, Bolam JP, Mena-Segovia J. Topographical organization of the pedunculopontine nucleus. Front Neuroanat. 2011;5:22.

Article  PubMed  PubMed Central  Google Scholar 

Aston-Jones G, Waterhouse B. Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res. 2016;1645:75–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzman JN, Sanchez-Padilla J, Chan CS, Surmeier DJ. Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci. 2009;29:11011–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature. 2007;447:1081–6.

Article  CAS  PubMed  Google Scholar 

Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT. Physiological phenotype and vulnerability in Parkinson's disease. Cold Spring Harb Perspect Med. 2012;2:a009290.

Article  PubMed  PubMed Central  Google Scholar 

Sanchez-Padilla J, Guzman JN, Ilijic E, Kondapalli J, Galtieri DJ, Yang B, et al. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat Neurosci. 2014;17:832–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldberg JA, Guzman JN, Estep CM, Ilijic E, Kondapalli J, Sanchez-Padilla J, et al. Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease. Nat Neurosci. 2012;15:1414–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zampese E, Wokosin DL, Gonzalez-Rodriguez P, Guzman JN, Tkatch T, Kondapalli J, et al. Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons. Sci Adv. 2022;8:eabp8701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 2018;592:692–702.

Article  CAS  PubMed  Google Scholar 

Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219:979–80.

Article  CAS  PubMed  Google Scholar 

Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39:889–909.

Article  CAS 

留言 (0)

沒有登入
gif