Predictive Value of CT Biomarkers in Lung Transplantation Survival: Preliminary Investigation in a Diverse, Underserved, Urban Population

Valapour M, Lehr CJ, Skeans MA et al (2022) OPTN/SRTR 2020 annual data report: lung. Am J Transplant 22(S2):438–518. https://doi.org/10.1111/ajt.16991

Article  PubMed  Google Scholar 

Kobashigawa J, Dadhania D, Bhorade S et al (2019) Report from the American Society of Transplantation on frailty in solid organ transplantation. Am J Transplant 19(4):984–994. https://doi.org/10.1111/ajt.15198

Article  PubMed  Google Scholar 

Hook JL, Lederer DJ (2012) Selecting lung transplant candidates: where do current guidelines fall short? Expert Rev Respir Med 6(1):51. https://doi.org/10.1586/ers.11.83

Article  PubMed  PubMed Central  Google Scholar 

Kelm DJ, Bonnes SL, Jensen MD et al (2016) Pre-transplant wasting (as measured by muscle index) is a novel prognostic indicator in lung transplantation. Clin Transplant 30(3):247–255. https://doi.org/10.1111/ctr.12683

Article  PubMed  Google Scholar 

Hsu J, Krishnan A, Lin CT et al (2019) Sarcopenia of the psoas muscles is associated with poor outcomes following lung transplantation. Ann Thorac Surg 107(4):1082–1088. https://doi.org/10.1016/j.athoracsur.2018.10.006

Article  PubMed  Google Scholar 

Gani F, Cerullo M, Amini N et al (2017) Frailty as a risk predictor of morbidity and mortality following liver surgery. J Gastrointest Surg 21(5):822–830. https://doi.org/10.1007/s11605-017-3373-6

Article  PubMed  Google Scholar 

Awano N, Inomata M, Kuse N et al (2020) Quantitative computed tomography measures of skeletal muscle mass in patients with idiopathic pulmonary fibrosis according to a multidisciplinary discussion diagnosis: a retrospective nationwide study in Japan. Respir Investig 58(2):91–101. https://doi.org/10.1016/j.resinv.2019.11.002

Article  PubMed  Google Scholar 

Pienta MJ, Zhang P, Derstine BA et al (2018) Analytic morphomics predict outcomes after lung transplantation. Ann Thorac Surg 105(2):399–405. https://doi.org/10.1016/j.athoracsur.2017.08.049

Article  PubMed  Google Scholar 

Sella N, Boscolo A, Lovison D et al (2022) The impact of nutritional status and sarcopenia on the outcomes of lung transplantation. J Heart Lung Transplant 41(4):S165. https://doi.org/10.1016/j.healun.2022.01.388

Article  Google Scholar 

Kashani K, Sarvottam K, Pereira NL, Barreto EF, Kennedy CC (2018) The sarcopenia index: a novel measure of muscle mass in lung transplant candidates. Clin Transplant 32(3):e13182. https://doi.org/10.1111/ctr.13182

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singer JP, Diamond JM, Anderson MR et al (2018) Frailty phenotypes and mortality after lung transplantation: a prospective cohort study. Am J Transplant 18(8):1995–2004. https://doi.org/10.1111/ajt.14873

Article  PubMed  PubMed Central  Google Scholar 

Hu A, Prosper A, Ruchaslski K et al (2021) Sarcopenia is distinct from physical frailty and significantly associated with length of stay after transplantation. J Heart Lung Transplant 40(4):S318–S319. https://doi.org/10.1016/j.healun.2021.01.902

Article  Google Scholar 

Clausen ES, Frankel C, Palmer SM, Snyder LD, Smith PJ (2018) Pre-transplant weight loss and clinical outcomes after lung transplantation. J Heart Lung Transplant 37(12):1443–1447. https://doi.org/10.1016/j.healun.2018.07.015

Article  PubMed  Google Scholar 

Singer JP, Peterson ER, Golden J et al (2014) Lung Transplant body composition. J Heart Lung Transplant 33(4):S79. https://doi.org/10.1016/j.healun.2014.01.246

Article  Google Scholar 

McClellan T, Allen BC, Kappus M et al (2017) Repeatability of computerized tomography-based anthropomorphic measurements of frailty in patients with pulmonary fibrosis undergoing lung transplantation. Curr Probl Diagn Radiol 46(4):300–304. https://doi.org/10.1067/j.cpradiol.2016.12.009

Article  PubMed  Google Scholar 

Tanimura K, Sato S, Fuseya Y et al (2016) Quantitative assessment of erector spinae muscles in patients with chronic obstructive pulmonary disease. Novel chest computed tomography–derived index for prognosis. Annals ATS 13(3):334–341. https://doi.org/10.1513/AnnalsATS.201507-446OC

Article  Google Scholar 

Heymsfield SB, Gonzalez MC, Lu J, Jia G, Zheng J (2015) Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc Nutr Soc 74(4):355–366. https://doi.org/10.1017/S0029665115000129

Article  PubMed  Google Scholar 

Oshima Y, Sato S, Chen-Yoshikawa TF et al (2022) Erector spinae muscle radiographic density is associated with survival after lung transplantation. J Thorac Cardiovasc Surg 164(1):300-311.e3. https://doi.org/10.1016/j.jtcvs.2021.07.039

Article  PubMed  Google Scholar 

Weig T, Milger K, Langhans B et al (2016) Core muscle size predicts postoperative outcome in lung transplant candidates. Ann Thorac Surg 101(4):1318–1325. https://doi.org/10.1016/j.athoracsur.2015.10.041

Article  PubMed  Google Scholar 

Rozenberg D, Wickerson L, Singer LG, Mathur S (2014) Sarcopenia in lung transplantation: a systematic review. J Heart Lung Transplant 33(12):1203–1212. https://doi.org/10.1016/j.healun.2014.06.003

Article  PubMed  Google Scholar 

Rozenberg D, Orsso CE, Chohan K et al (2020) Clinical outcomes associated with computed tomography-based body composition measures in lung transplantation: a systematic review. Transpl Int 33(12):1610–1625. https://doi.org/10.1111/tri.13749

Article  PubMed  Google Scholar 

Anderson MR, Easthausen I, Gallagher G et al (2020) Skeletal muscle adiposity and outcomes in candidates for lung transplantation: a lung transplant body composition cohort study. Thorax 75(9):801–804. https://doi.org/10.1136/thoraxjnl-2019-214461

Article  PubMed  Google Scholar 

Hu A, Prosper A, Ruchalski K et al (2023) Sarcopenia predicts outcomes after lung transplantation in older lung transplant candidates. Ann Thorac Surg Short Rep 1(1):174–178. https://doi.org/10.1016/j.atssr.2022.11.005

Article  Google Scholar 

Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC (2018) Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep 8(1):11369. https://doi.org/10.1038/s41598-018-29825-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

McNabb-Baltar J, Manickavasagan HR, Conwell DL et al (2022) A pilot study to assess opportunistic use of CT-scan for osteoporosis screening in chronic pancreatitis. Front Physiol 13:866945. https://doi.org/10.3389/fphys.2022.866945

Article  PubMed  PubMed Central  Google Scholar 

Parulekar AD, Wang T, Li GW, Hoang V, Kao CC (2020) Pectoralis muscle area is associated with bone mineral density and lung function in lung transplant candidates. Osteoporos Int 31(7):1361–1367. https://doi.org/10.1007/s00198-020-05373-5

Article  CAS  PubMed  Google Scholar 

Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81(3):515–526. https://doi.org/10.1093/biomet/81.3.515

Article  Google Scholar 

Alawi M, Begum A, Harraz M et al (2021) Dual-energy X-ray absorptiometry (DEXA) scan versus computed tomography for bone density assessment. Cureus 13(2):e13261. https://doi.org/10.7759/cureus.13261

Article  PubMed  PubMed Central  Google Scholar 

Buckens CF, Dijkhuis G, de Keizer B, Verhaar HJ, de Jong PA (2015) Opportunistic screening for osteoporosis on routine computed tomography? An external validation study Eur Radiol 25(7):2074–2079. https://doi.org/10.1007/s00330-014-3584-0

Article  PubMed  Google Scholar 

Hendrickson NR, Pickhardt PJ, del Rio AM, Rosas HG, Anderson PA (2018) Bone mineral density T-scores derived from CT attenuation numbers (Hounsfield Units): clinical utility and correlation with dual-energy X-ray absorptiometry. Iowa Orthop J 38:25–31

PubMed  PubMed Central  Google Scholar 

Lee SY, Kwon SS, Kim HS et al (2015) Reliability and validity of lower extremity computed tomography as a screening tool for osteoporosis. Osteoporos Int 26(4):1387–1394. https://doi.org/10.1007/s00198-014-3013-x

Article  CAS  PubMed  Google Scholar 

Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158(8):588–595. https://doi.org/10.7326/0003-4819-158-8-201304160-00003

Article  PubMed  PubMed Central  Google Scholar 

Schreiber JJ, Anderson PA, Hsu WK (2014) Use of computed tomography for assessing bone mineral density. Neurosurg Focus 37(1):E4. https://doi.org/10.3171/2014.5.FOCUS1483

Article  PubMed  Google Scholar 

Zaidi Q, Danisa OA, Cheng W (2019) Measurement techniques and utility of Hounsfield unit values for assessment of bone quality prior to spinal instrumentation: a review of current literature. Spine 44(4):E239–E244. https://doi.org/10.1097/BRS.0000000000002813

Article  PubMed  Google Scholar 

Choi MK, Kim SM, Lim JK (2016) Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir 158(7):1421–1427. https://doi.org/10.1007/s00701-016-2821-5

Article  PubMed  Google Scholar 

Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM (2017) Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J Bone Joint Surg 99(18):1580–1590. https://doi.org/10.2106/JBJS.16.00749

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif