MBD1 protects replication fork stability by recruiting PARP1 and controlling transcription-replication conflicts

Song HY, Shen R, Mahasin H, Guo YN, Wang DG. DNA replication: mechanisms and therapeutic interventions for diseases. MedComm. 2023;4:e210.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondratick CM, Washington MT, Spies M. Making choices: DNA replication fork recovery mechanisms. Semin Cell Dev Biol. 2021;113:27–37.

Article  CAS  PubMed  Google Scholar 

Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329:85–93.

Article  CAS  PubMed  Google Scholar 

Bhat KP, Cortez D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol. 2018;25:446–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16:2–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rickman K, Smogorzewska A. Advances in understanding DNA processing and protection at stalled replication forks. J Cell Biol. 2019;218:1096–107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Follonier C, Oehler J, Herrador R, Lopes M. Friedreich’s ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol. 2013;20:486–94.

Article  CAS  PubMed  Google Scholar 

Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol. 2012;19:417–23.

Article  CAS  PubMed  Google Scholar 

Lopper M, Boonsombat R, Sandler SJ, Keck JL. A hand-off mechanism for primosome assembly in replication restart. Mol Cell. 2007;26:781–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145:529–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012;22:106–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016;535:382–7.

Article  PubMed  Google Scholar 

Higgs MR, Reynolds JJ, Winczura A, Blackford AN, Borel V, Miller ES, et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol Cell. 2015;59:462–77.

Article  CAS  PubMed  Google Scholar 

Chen L, Chen JY, Huang YJ, Gu Y, Qiu J, Qian H, et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol Cell. 2018;69:412–25.e416.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortez D. Preventing replication fork collapse to maintain genome integrity. DNA Repair. 2015;32:149–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage Responses. Cell. 2017;170:774–86.e719.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemacon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8:860.

Article  PubMed  PubMed Central  Google Scholar 

Shiu J-L, Wu C-K, Chang S-B, Sun Y-J, Chen Y-J, Lai C-C, et al. The HLTF–PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis. 2020;9:104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol. 2013;20:347–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. The importance of poly(ADP-Ribose) polymerase as a sensor of unligated okazaki fragments during DNA replication. Mol Cell. 2018;71:319–31.e313.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–84.

Article  CAS  PubMed  Google Scholar 

Genois M-M, Gagné J-P, Yasuhara T, Jackson J, Saxena S, Langelier M-F, et al. CARM1 regulates replication fork speed and stress response by stimulating PARP1. Mol Cell. 2021;81:784–800.e788.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen JZ, Qiu Z, Wu Q, Finlay D, Garcia G, Sun D, et al. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell. 2021;184:352–69.e323.

Article  CAS  PubMed  Google Scholar 

Theulot B, Lacroix L, Arbona JM, Millot GA, Jean E, Cruaud C, et al. Genome-wide mapping of individual replication fork velocities using nanopore sequencing. Nat Commun. 2022;13:3295.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer. 2021;7:863–77.

Article  CAS  PubMed  Google Scholar 

Xu X, Ni K, He Y, Ren J, Sun C, Liu Y, et al. The epigenetic regulator LSH maintains fork protection and genomic stability via MacroH2A deposition and RAD51 filament formation. Nat Commun. 2021;12:3520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wade PA. Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene. 2001;20:3166–73.

Article  CAS  PubMed  Google Scholar 

Clouaire T, Stancheva I. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci. 2008;65:1509–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Chen BF, Chan WY. An epigenetic regulator: methyl-CpG-binding domain protein 1 (MBD1). Int J Mol Sci. 2015;16:5125–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujita N, Watanabe S, Ichimura T, Ohkuma Y, Chiba T, Saya H et al. MCAF mediates MBD1-dependent transcriptional repression. Mol Cell Biol. 2003;23:2834–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Zhu W, Xu W, Cui X, Chen L, Ji S, et al. Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair. Int J Oncol. 2013;42:2046–52.

Article  CAS  PubMed  Google Scholar 

Olivieri M, Cho T, Alvarez-Quilon A, Li K, Schellenberg MJ, Zimmermann M, et al. A genetic map of the response to DNA damage in human cells. Cell. 2020;182:481–96.e421.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clouaire T, de Las Heras JI, Merusi C, Stancheva I. Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res. 2010;38:4620–34.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif