CUDC-907 exhibits potent antitumor effects against ovarian cancer through multiple in vivo and in vitro mechanisms

Brett MR, Brett MR, Jennifer BP et al (2017) Epidemiology of ovarian cancer: a review. Cancer Biol Med 14 (1):9–32. https://doi.org/10.20892/j.issn.2095-3941.2016.0084

Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177(3):1053–1064. https://doi.org/10.2353/ajpath.2010.100105

Article  PubMed  PubMed Central  Google Scholar 

Coburn SB, Bray F, Sherman ME et al (2017) International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer 140(11):2451–2460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel RL, Miller KD, Wagle NS et al (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48. https://doi.org/10.3322/caac.21763

Article  PubMed  Google Scholar 

Fang Y, Zhao J, Guo X et al (2022) Establishment, immunological analysis, and drug prediction of a prognostic signature of ovarian cancer related to histone acetylation. Front Pharmacolo. https://doi.org/10.3389/fphar.2022.947252

Article  Google Scholar 

Wang D, Li C, Zhang Y et al (2016) Combined inhibition of PI3K and PARP is effective in the treatment of ovarian cancer cells with wild-type PIK3CA genes. Gynecol Oncol 142(3):548–556. https://doi.org/10.1016/j.ygyno.2016.07.092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levine DA, Bogomolniy F, Yee CJ et al (2005) Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11(8):2875–2878. https://doi.org/10.1158/1078-0432.Ccr-04-2142

Article  CAS  PubMed  Google Scholar 

Shayesteh L, Lu Y, Kuo W-L et al (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21(1):99–102. https://doi.org/10.1038/5042

Article  CAS  PubMed  Google Scholar 

Yano M, Yasuda M, Sakaki M et al (2018) Association of histone deacetylase expression with histology and prognosis of ovarian cancer. Oncol Lett 15(3):3524–3531. https://doi.org/10.3892/ol.2018.7726

Article  CAS  PubMed  Google Scholar 

Islam MM, Banerjee T, Packard CZ et al (2017) HDAC10 as a potential therapeutic target in ovarian cancer. Gynecol Oncol 144(3):613–620

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali A, Zhang F, Maguire A et al (2020) HDAC6 degradation inhibits the growth of high-grade serous ovarian cancer cells. Cancers 12(12):3734. https://doi.org/10.3390/cancers12123734

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo J, Jeon Y, Lee D et al (2021) HDAC6-selective inhibitors enhance anticancer effects of paclitaxel in ovarian cancer cells. Oncol Lett 21(3):201. https://doi.org/10.3892/ol.2021.12462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian C, Lai CJ, Bao R et al (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. J Clin Cancer Res 18(15):4104

Article  CAS  Google Scholar 

Fu X-h, Zhang X, Yang H et al (2018) CUDC-907 displays potent antitumor activity against human pancreatic adenocarcinoma in vitro and in vivo through inhibition of HDAC6 to downregulate c-Myc expression. Acta Pharmacologica Sinica 40(5):677–688. https://doi.org/10.1038/s41401-018-0108-5

Article  CAS  PubMed  Google Scholar 

Nebbioso A, Carafa V, Conte M et al (2017) c-Myc Modulation and Acetylation Is a Key HDAC Inhibitor Target in Cancer. Clin Cancer Res 23(10):2542–2555. https://doi.org/10.1158/1078-0432.Ccr-15-2388

Article  CAS  PubMed  Google Scholar 

Sun K, Atoyan R, Borek MA et al (2017) Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers. Mol Cancer Therapeut 16(2):285–299. https://doi.org/10.1158/1535-7163.Mct-16-0390

Article  CAS  Google Scholar 

Prathapam T, Aleshin A, Guan Y et al (2010) p27Kip1 mediates addiction of ovarian cancer cells to MYCC (c-MYC) and their dependence on MYC paralogs. J Biol Chem 285(42):32529–32538. https://doi.org/10.1074/jbc.M110.151902

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615. https://doi.org/10.1038/nature10166

Article  CAS  Google Scholar 

Kotian S, Zhang L, Boufraqech M et al (2017) Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 inhibits thyroid cancer growth and metastases. Clin Cancer Res 23(17):5044–5054. https://doi.org/10.1158/1078-0432.Ccr-17-1043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma L, Bian X, Lin W (2020) The dual HDAC-PI3K inhibitor CUDC-907 displays single-agent activity and synergizes with PARP inhibitor olaparib in small cell lung cancer. J Experim Clin Cancer Res 39(1):219. https://doi.org/10.1186/s13046-020-01728-2

Article  CAS  Google Scholar 

Chilamakuri R, Agarwal S (2022) Dual targeting of PI3K and HDAC by CUDC-907 inhibits pediatric neuroblastoma growth. Cancers 14(4):1067. https://doi.org/10.3390/cancers14041067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jian Z, Han Y, Zhang W et al (2022) Anti-tumor effects of dual PI3K-HDAC inhibitor CUDC-907 on activation of ROS-IRE1α-JNK-mediated cytotoxic autophagy in esophageal cancer. Cell Biosci 12(1):135. https://doi.org/10.1186/s13578-022-00855-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang Z, Li C, Kang B et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102. https://doi.org/10.1093/nar/gkx247

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery 2(5):401–404. https://doi.org/10.1158/2159-8290.Cd-12-0095

Article  PubMed  Google Scholar 

Cai L, Liao Z, Li S et al (2022) PLP1 may serve as a potential diagnostic biomarker of uterine fibroids. Front Genet 13:1045395. https://doi.org/10.3389/fgene.2022.1045395

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu CF, Liu Z-X, Cantley LG (2002) ERK negatively regulates the epidermal growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. J Biol Chem 277(22):19382–19388. https://doi.org/10.1074/jbc.M200732200

Article  CAS  PubMed  Google Scholar 

Angelucci A, Zhong H, Sanchez C et al (2013) Synergistic effects of concurrent blockade of PI3K and MEK pathways in pancreatic cancer preclinical models. PLoS One 8(10):e77243. https://doi.org/10.1371/journal.pone.0077243

Article  CAS  Google Scholar 

Pramanik SD, Kumar Halder A, Mukherjee U et al (2022) Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 10:948217. https://doi.org/10.3389/fchem.2022.948217

Article  CAS  PubMed  Google Scholar 

Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328. https://doi.org/10.1016/j.tibs.2011.03.006

Article  CAS  PubMed Central  Google Scholar 

Greve G, Schiffmann I, Pfeifer D et al (2015) The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer 15(1):947. https://doi.org/10.1186/s12885-015-1967-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mondello P, Derenzini E, Asgari Z et al (2017) Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget 8 (8):14017–14028. https://doi.org/10.18632/oncotarget.14876

Zhang W, Zhang Y, Tu T et al (2020) Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 attenuates TGFβ1 induced lung and tumor fibrosis. Cell Death Dis 11(9):765. https://doi.org/10.1038/s41419-020-02916-w

Article  CAS  PubMed Central  Google Scholar 

Younes A, Berdeja JG, Patel MR et al (2016) Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol 17(5):622–631. https://doi.org/10.1016/s1470-2045(15)00584-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Landsburg DJ, Barta SK, Ramchandren R et al (2021) Fimepinostat (CUDC-907) in patients with relapsed/refractory diffuse large B cell and high-grade B-cell lymphoma: report of a phase 2 trial and exploratory biomarker analyses. British J Haematol 195(2):201–209. https://doi.org/10.1111/bjh.17730

Article  CAS  Google Scholar 

Lee YJ, Kim D, Kim H-S et al (2019) Integrating a next generation sequencing panel into clinical practice in ovarian cancer. Yonsei Med J 60(10):914–923. https://doi.org/10.3349/ymj.2019.60.10.914

Article 

留言 (0)

沒有登入
gif