Involvement of PI3K/AKT Pathway in the Rapid Antidepressant Effects of Crocetin in Mice with Depression-Like Phenotypes

Marwaha S, Palmer E, Suppes T et al (2023) Novel and emerging treatments for major depression. Lancet 401(10371):141–153

Article  CAS  PubMed  Google Scholar 

Anthes E (2014) Depression: a change of mind. Nature 515(7526):185–187

Article  CAS  PubMed  Google Scholar 

Wilkinson ST, Sanacora G (2019) A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov Today 24(2):606–615

Article  CAS  PubMed  Google Scholar 

Bauer M, Severus E, Kohler S et al (2015) World federation of societies of biological psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders. Part 2: maintenance treatment of major depressive disorder-update 2015. World J Biol Psychiatry 16(2):76–95

Article  PubMed  Google Scholar 

Shelton RC, Osuntokun O, Heinloth AN et al (2010) Therapeutic options for treatment-resistant depression. CNS Drugs 24(2):131–161

Article  CAS  PubMed  Google Scholar 

Gould TD, Zarate CA Jr, Thompson SM (2019) Molecular pharmacology and neurobiology of rapid-acting antidepressants. Annu Rev Pharmacol Toxicol 59:213–236

Article  CAS  PubMed  Google Scholar 

Sales AJ, Fogaca MV, Sartim AG et al (2019) Cannabidiol induces rapid and sustained antidepressant-like effects through increased bdnf signaling and synaptogenesis in the prefrontal cortex. Mol Neurobiol 56(2):1070–1081

Article  CAS  PubMed  Google Scholar 

Yin S, Shao J, Wang X et al (2019) Methylene blue exerts rapid neuroprotective effects on lipopolysaccharide-induced behavioral deficits in mice. Behav Brain Res 356:288–294

Article  CAS  PubMed  Google Scholar 

Ren Z, Yan P, Zhu L et al (2018) Dihydromyricetin exerts a rapid antidepressant-like effect in association with enhancement of BDNF expression and inhibition of neuroinflammation. Psychopharmacology 235(1):233–244

Article  CAS  PubMed  Google Scholar 

Tang J, Xue W, Xia B et al (2015) Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice. Sci Rep 5:13573–13586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sperner-Unterweger B, Kohl C, Fuchs D (2014) Immune changes and neurotransmitters: possible interactions in depression? Prog Neuro-Psychopharmacol Biol Psychiatry 48:268–276

Article  CAS  Google Scholar 

Jin Y, Sun LH, Yang W et al (2019) The role of bdnf in the neuroimmune axis regulation of mood disorders. Front Neurol 10:515

Article  PubMed  PubMed Central  Google Scholar 

Lee S, Kim HB, Hwang ES et al (2018) Antidepressant-like effects of p-coumaric acid on LPS-induced depressive and inflammatory changes in rats. Exp Neurobiol 27(3):189–199

Article  PubMed  PubMed Central  Google Scholar 

Panczyszyn-Trzewik P, Misztak P, Nowak G et al (2017) Alterations of Nrf2 nuclear factor are associated with inflammation and oxidative stress in chronic mild stress animal model of depression. Eur Neuropsychopharmacol 27:S841–S841

Article  Google Scholar 

Sowa-Kucma M, Styczen K, Siwek M et al (2018) Lipid peroxidation and Immune biomarkers are associated with major depression and its phenotypes, including treatment-resistant depression and melancholia. Neurotox Res 33(2):448–460

Article  CAS  PubMed  Google Scholar 

Lindqvist D, Dhabhar FS, James SJ et al (2017) Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology 76:197–205

Article  CAS  PubMed  Google Scholar 

Birur B, Amrock EM, Shelton RC et al (2017) Sex differences in the peripheral immune system in patients with depression. Front Psychiatry 8:108

Article  PubMed  PubMed Central  Google Scholar 

Pazini FL, Cunha MP, Rosa JM et al (2016) Creatine, similar to ketamine, counteracts depressive-like behavior induced by corticosterone via pi3k/akt/mtor pathway. Mol Neurobiol 53(10):6818–6834

Article  CAS  PubMed  Google Scholar 

Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35(1):47–56

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin Y, Sui HJ, Dong Y et al (2012) Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up-regulating the Akt/mTOR and Akt/GSK-3 beta signaling pathways. Acta Pharmacol Sin 33(7):861–872

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neis VB, Moretti M, Rosa PB et al (2020) The involvement of PI3K/Akt/mTOR/GSK3 beta signaling pathways in the antidepressant-like effect of AZD6765. Pharmacol Biochem Behav 198:173020

Article  CAS  PubMed  Google Scholar 

Li NX, Lee B, Liu RJ et al (2010) mTOR-Dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zarate CA (2020) Ketamine: a new chapter in antidepressant development. Braz J Psychiat 42(6):581–582

Article  Google Scholar 

Gai M, Bo Q, Qi L (2016) Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-kappaB pathway in Ovarian cancer. Biochem Biophys Res Commun 469(4):1000–1005

Article  CAS  PubMed  Google Scholar 

Zhang C, Zeng M, Zhou L et al (2018) Baicalin exerts neuroprotective effects via inhibiting activation of GSK3beta/NF-kappaB/NLRP3 signal pathway in a rat model of depression. Int Immunopharmacol 64:175–182

Article  CAS  PubMed  Google Scholar 

Beurel E, Song L, Jope RS (2011) Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry 16(11):1068–1070

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang C, Zhou ZQ, Gao ZQ et al (2013) Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase-3beta, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients. Biol Psychiatry 73(12):e35-36

Article  CAS  PubMed  Google Scholar 

Mousavi SZ, Bathaie SZ (2011) Historical uses of saffron: identifying potential new avenues for modern research. Avicenna J Phytomed 1(2):57–66

Google Scholar 

Barbara T, Péter H, Tamás L et al (2019) The efficacy of saffron in the treatment of mild to moderate depression: a meta-analysis. Planta Med 85:24–31

Article  Google Scholar 

Yoshino F, Yoshida A, Umigai N et al (2011) Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain. J Clin Biochem Nutr 49(3):182–187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong Y-J, Yang K-S (2013) Anti-inflammatory activities of crocetin derivatives from processed Gardenia jasminoides. Arch Pharm Res 36:933–940

Article  CAS  PubMed  Google Scholar 

Farkhondeh T, Samarghandian S, Samini F et al (2018) Protective effects of crocetin on depression-like behavior induced by immobilization in rat. CNS Neurol Disord 17(5):361–369

Article  CAS  Google Scholar 

Mizuma H, Tanaka M, Nozaki S et al (2009) Daily oral administration of crocetin attenuates physical fatigue in human subjects. Nutr Res 29(3):145–150

Article  CAS  PubMed  Google Scholar 

Xi L, Zhiyu Q, Peng D et al (2007) Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine 14(9):633–636

Article  CAS  PubMed  Google Scholar 

Salama RM, Abdel-Latif GA, Abbas SS et al (2020) Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 164:107900

Article  CAS  PubMed  Google Scholar 

Lin S, Li Q, Xu Z et al (2022) Detection of the role of intestinal flora and tryptophan metabolism involved in antidepressant-like actions of crocetin based on a multi-omics approach. Psychopharmacology 239(11):3657–3677

Article  CAS  PubMed  Google Scholar 

Lin S, Li Q, Jiang S et al (2021) Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. J Ethnopharmacol 268:113608

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif