Relationship of Morphometrics and Symptom Severity in Female Type I Chiari Malformation Patients with Biological Resilience

Milhorat TH, et al. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 1999;44(5):1005–17. https://doi.org/10.1097/00006123-199905000-00042.

Article  CAS  PubMed  Google Scholar 

Houston JR, et al. A morphometric assessment of type I Chiari malformation above the McRae line: A retrospective case-control study in 302 adult female subjects. J Neuroradiol. 2018;45(1):23–31. https://doi.org/10.1016/j.neurad.2017.06.006.

Article  PubMed  Google Scholar 

Eppelheimer MS, et al. Quantification of changes in brain morphology following posterior fossa decompression surgery in women treated for Chiari malformation type 1. Neuroradiology. 2019;61(9):1011–22. https://doi.org/10.1007/s00234-019-02206-z.

Article  PubMed  Google Scholar 

Fischbein R, et al. Patient-reported Chiari malformation type I symptoms and diagnostic experiences: a report from the national conquer chiari patient registry database. Neurol Sci. 2015;36(9):1617–24. https://doi.org/10.1007/s10072-015-2219-9.

Article  PubMed  Google Scholar 

Allen PA, et al. Task-specific and general cognitive effects in Chiari malformation type I. PLoS One. 2014;9(4):e94844. https://doi.org/10.1371/journal.pone.0094844.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houston JR, et al. Type I Chiari malformation, RBANS performance, and brain morphology: Connecting the dots on cognition and macrolevel brain structure. Neuropsychology. 2019;33(5):725–38. https://doi.org/10.1037/neu0000547.

Article  PubMed  Google Scholar 

Rogers JM, Savage G, Stoodley MA. A systematic review of cognition in Chiari I malformation. Neuropsychol Rev. 2018;28(2):176–87. https://doi.org/10.1007/s11065-018-9368-6.

Article  PubMed  Google Scholar 

Garcia M, et al. Comparison between decompressed and non-decompressed Chiari malformation type I patients: a neuropsychological study. Neuropsychologia. 2018;121:135–43. https://doi.org/10.1016/j.neuropsychologia.2018.11.002.

Article  PubMed  Google Scholar 

Houston ML, Houston JR, Sakaie K, Klinge PM, Vorster S, Luciano MG, Loth F, Allen PA. Functional connectivity abnormalities in Type I Chiari: associations with cognition and pain. Brain Commun. 2021. https://doi.org/10.1093/braincomms/fcab137.

Garcia MA, et al. An examination of pain, disability, and the psychological correlates of Chiari Malformation pre- and post-surgical correction. Disabil Health J. 2019;12(4):649–56. https://doi.org/10.1016/j.dhjo.2019.05.004.

Article  PubMed  Google Scholar 

Yilmaz A, et al. When is duraplasty required in the surgical treatment of Chiari malformation type I based on tonsillar descending grading scale? World Neurosurg. 2011;75(2):307–13. https://doi.org/10.1016/j.wneu.2010.09.005.

Article  PubMed  Google Scholar 

Eppelheimer MS, et al. Cerebellar and brainstem displacement measured with DENSE MRI in Chiari malformation following posterior fossa decompression surgery. Radiology. 2021;301(1):187–94. https://doi.org/10.1148/radiol.2021203036.

Article  PubMed  Google Scholar 

Biswas D, et al. Quantification of cerebellar crowding in type I Chiari malformation. Ann Biomed Eng. 2019;47(3):731–43. https://doi.org/10.1007/s10439-018-02175-z.

Article  PubMed  Google Scholar 

Cremeans-Smith JK, Boarts JM, Greene K, Delahanty DL. Patients’ reasons for electing to undergo total knee arthroplasty impact post-operative pain severity and range of motion. J Behav Med. 2009;32(3):223–33. https://doi.org/10.1007/s10865-008-9191-2.

Article  PubMed  Google Scholar 

Garcia MA, Li X, Allen PA, Delahanty DL, Eppelheimer MS, Houston JR, Johnson DM, Loth F, Maleki J, Vorster S, Luciano MG. Impact of surgical status, loneliness, and disability on interleukin 6, C-reactive protein, cortisol, and estrogen in females with symptomatic type I Chiari malformation. Cerebellum. 2021. https://doi.org/10.1007/s12311-021-01251-w.

García M, Eppelheimer MS, Houston JR, Hughes ML, Nwotchouang BST, Kaut KP, Labuda R, Bapuraj JR, Maleki J, Klinge PM, Vorster S, Luciano MG, Loth F, Allen PA. Adult age differences in self-reported pain and anterior CSF space in Chiari malformation. Cerebellum. 2022;21(2):194–207. https://doi.org/10.1007/s12311-021-01289-w.

McEwen BS, Alves SE. Estrogen actions in the central nervous system. Endocr Rev. 1999;20(3):279–307. https://doi.org/10.1210/edrv.20.3.0365.

Article  CAS  PubMed  Google Scholar 

McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153(18):2093–101. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/8379800.

Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010;35(1):2–16. https://doi.org/10.1016/j.neubiorev.2009.10.002.

Article  PubMed  Google Scholar 

Russell D. UCLA loneliness scale (Version 3): reliability, validity, and factor structure. J Pers Assess. 1996;66:20–40.

Article  CAS  PubMed  Google Scholar 

Fairbanks CT, Couper C, Davies JB, O’Brien JP. The Oswestry low backpain disability questionannaire. Physiotherapy. 1980;66:271–3.

Google Scholar 

Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–70. https://doi.org/10.1093/brain/awx317.

Article  PubMed  Google Scholar 

Van Overwalle F, Manto M, Leggio M, Delgado-Garcia JM. The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypotheses. 2019;128:33–42. https://doi.org/10.1016/j.mehy.2019.05.014.

Article  PubMed  Google Scholar 

García M, Amayra I, López-Paz JF, Martínez O, Lázaro E, Pérez M, Berrocoso S, Al-Rashaida M, Infante J. Social cognition in Chiari malformation type I: a preliminary characterization. Cerebellum. 2020;19:392–400. https://doi.org/10.1007/s12311-020-01117-7.

Article  PubMed  Google Scholar 

Allen PA, et al. Chiari 1000 registry project: assessment of surgical outcome on self-focused attention, pain, and delayed recall. Psychol Med. 2018;48(10):1634–43. https://doi.org/10.1017/S0033291717003117.

Article  CAS  PubMed  Google Scholar 

Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the beck depression and anxiety inventories. Behav Res Ther. 1995;33(3):335–43. https://doi.org/10.1016/0005-7967(94)00075-u.

Article  CAS  PubMed  Google Scholar 

Dworkin RH, et al. Development and initial validation of an expanded and revised version of the Short-form McGill Pain Questionnaire (SF-MPQ-2). Pain. 2009;144(1–2):35–42. https://doi.org/10.1016/j.pain.2009.02.007.

Article  PubMed  Google Scholar 

Fairbank JCT, Pynsent PB. The oswestry disability index. Spine. 2000;25(22):2940–52. https://doi.org/10.1097/00007632-200011150-00017 (in English).

Article  CAS  PubMed  Google Scholar 

Vernon H, Mior S. The neck disability index - a study of reliability and validity. J Manip Physiol Ther. 1991;14(7):409–415. [Online]. Available: <Go to ISI>://WOS:A1991GF68000002 (in English).

Keppel G. Design and Analysis: A researcher’s handbook. Englewood Cliffs, N.J.: Prentice-Hall; 1982.

Google Scholar 

留言 (0)

沒有登入
gif