Neurodevelopmental disorders and cancer networks share pathways, but differ in mechanisms, signaling strength, and outcome

Moreno-De-Luca, A. et al. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol. 12, 406–414 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Khodosevich, K. & Sellgren, C. M. Neurodevelopmental disorders-high-resolution rethinking of disease modeling. Mol. Psychiatry 28, 34–43 (2023).

Article  PubMed  Google Scholar 

Murtaza, N. et al. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep. 41, 111678 (2022).

Article  CAS  PubMed  Google Scholar 

Nussinov, R., Tsai, C.-J. & Jang, H. How can same-gene mutations promote both cancer and developmental disorders? Sci. Adv. 8, eabm2059 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, C.-C. et al. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct. Target Ther. 7, 229 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Parenti, I., Rabaneda, L.G., Schoen, H. & Novarino, G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 43, 608–621, (2020).

Article  CAS  PubMed  Google Scholar 

Qi, H., Dong, C., Chung, W. K., Wang, K. & Shen, Y. Deep genetic connection between cancer and developmental disorders. Hum. Mutat. 37, 1042–1050 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Baranova, J. et al. Autism spectrum disorder: signaling pathways and prospective therapeutic targets. Cell. Mol. Neurobiol. 41, 619–649 (2021).

Article  PubMed  Google Scholar 

Crawley, J. N., Heyer, W.-D. & LaSalle, J. M. Autism and cancer share risk genes, pathways, and drug targets. Trends Genet. 32, 139–146 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabrielli, A. P., Manzardo, A. M. & Butler, M. G. GeneAnalytics pathways and profiling of shared autism and cancer genes. Int. J. Mol. Sci. 20, 1166 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 8, 387–398 (2008).

Article  CAS  PubMed  Google Scholar 

Kwan, V., Unda, B. K. & Singh, K. K. Wnt signaling networks in autism spectrum disorder and intellectual disability. J. Neurodev. Disord. 8, 45 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Lopes, R., Soares, R., Figueiredo-Braga, M. & Coelho, R. Schizophrenia and cancer: is angiogenesis a missed link? Life Sci. 97, 91–95 (2014).

Article  CAS  PubMed  Google Scholar 

Wen, Y. & Herbert, M. R. Connecting the dots: overlaps between autism and cancer suggest possible common mechanisms regarding signaling pathways related to metabolic alterations. Med. Hypotheses 103, 118–123 (2017).

Article  PubMed  Google Scholar 

Huang, K.-L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370.e14 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, M. et al. The contribution of hereditary cancer-related germline mutations to lung cancer susceptibility. Transl. Lung Cancer Res. 9, 646–658 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qing, T. et al. Germline variant burden in cancer genes correlates with age at diagnosis and somatic mutation burden. Nat. Commun. 11, 2438 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rashed, W. M., Marcotte, E. L. & Spector, L. G. Germline de novo mutations as a cause of childhood cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.21.00505 (2022).

Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, X. et al. Germline genomic patterns are associated with cancer risk, oncogenic pathways, and clinical outcomes. Sci. Adv. 6, eaba4905 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, B. et al. De novo mutation of cancer-related genes associates with particular neurodevelopmental disorders. J. Mol. Med. 98, 1701–1712 (2020).

Article  CAS  PubMed  Google Scholar 

Koire, A. et al. A method to delineate de novo missense variants across pathways prioritizes genes linked to autism. Sci. Transl. Med. 13, eabc1739 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nussinov, R. et al. Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR and PAK1-regulated MAPK. Biophys. Rev. https://doi.org/10.1007/s12551-023-01054-9 (2023).

Chiang, H.-L. et al. Risk of cancer in children, adolescents, and young adults with autistic disorder. J. Pediatr. 166, 418–423.e1 (2015).

Article  PubMed  Google Scholar 

Liu, Q. et al. Cancer risk in individuals with autism spectrum disorder. Ann. Oncol. 33, 713–719 (2022).

Article  CAS  PubMed  Google Scholar 

Kao, H.-T., Buka, S. L., Kelsey, K. T., Gruber, D. F. & Porton, B. The correlation between rates of cancer and autism: an exploratory ecological investigation. PLoS ONE 5, e9372 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Chen, M.-H. et al. Cancer risk in patients with bipolar disorder and unaffected siblings of such patients: a nationwide population-based study. Int. J. Cancer 150, 1579–1586 (2022).

Article  CAS  PubMed  Google Scholar 

Singh, G., Driever, P. H. & Sander, J. W. Cancer risk in people with epilepsy: the role of antiepileptic drugs. Brain 128, 7–17 (2005).

Article  PubMed  Google Scholar 

Singh, G., Fletcher, O., Bell, G. S., McLean, A. E. & Sander, J. W. Cancer mortality amongst people with epilepsy: a study of two cohorts with severe and presumed milder epilepsy. Epilepsy Res. 83, 190–197 (2009).

Article  PubMed  Google Scholar 

Jansson, A. K. et al. Risk and mortality of testicular cancer in patients with neurodevelopmental or other psychiatric disorders. Br. J. Cancer 128, 2261–2269 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Turner, T. N. et al. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 45, D804–D811 (2017).

Article  CAS  PubMed  Google Scholar 

Bragin, E. et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. 42, D993–D1000 (2014).

Article  CAS  PubMed  Google Scholar 

Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 1–3 (2013).

Article  Google Scholar 

Piñero, J. et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, bav028 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Lu, D. et al. A shared genetic contribution to breast cancer and schizophrenia. Nat. Commun. 11, 1–10 (2020).

Article  Google Scholar 

Byrne, E. M. et al. Is schizophrenia a risk factor for breast cancer?-evidence from genetic data. Schizophr. Bull. 45, 1251–1256 (2019).

Article  PubMed  Google Scholar 

Anmella, G. et al. Risk of cancer in bipolar disorder and the potential role of lithium: international collaborative systematic review and meta-analyses. Neurosci. Biobehav. Rev. 126, 529–541 (2021).

Article  CAS  PubMed  Google Scholar 

Gao, X. et al. Glioma in schizophrenia: is the risk higher or lower? Front. Cell. Neurosci. 12, 399589 (2018).

Article  Google Scholar 

Ge, F. et al. Association between schizophrenia and prostate cancer risk: results from a pool of cohort studies and Mendelian randomization analysis. Compr. Psychiatry 115, 152308 (2022).

Article  PubMed  Google Scholar 

Chou, F. H.-C., Tsai, K.-Y., Su, C.-Y. & Lee, C.-C. The incidence and relative risk factors for developing cancer among patients with schizophrenia: a nine-year follow-up study. Schizophr. Res. 129, 97–103 (2011).

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif