Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, et al. Neutrophil Extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.
Article CAS PubMed Google Scholar
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41. https://doi.org/10.1083/jcb.200606027.
Article CAS PubMed PubMed Central Google Scholar
Simon D, Simon HU, Yousefi S. Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy. 2013;68(4):409–16. https://doi.org/10.1111/all.12111.
Article CAS PubMed Google Scholar
•• Bachert C, Marple B, Schlosser RJ, Hopkins C, Schleimer RP, Lambrecht BN, Bröker BM, et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020;6(1):86. https://doi.org/10.1038/s41572-020-00218-1. The review provides detailed information on chronic rhinosinusitis classification, symptoms, etiology, risk factors, and treatment.
Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289(25):17406–15. https://doi.org/10.1074/jbc.r113.546218.
Article CAS PubMed Central Google Scholar
Spencer LA, Bonjour K, Melo RCN, Weller PF. Eosinophil secretion of granule-derived cytokines. Front Immunol. 2014;5:496. https://doi.org/10.3389/fimmu.2014.00496.
Article CAS PubMed Google Scholar
Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9):949–53. https://doi.org/10.1038/nm.1855.
Article CAS PubMed Google Scholar
Ueki S, Tokunaga T, Melo RCN, Saito H, Honda K, Fukuchi M, Konno Y, et al. Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood. 2018;132(20):2183–7. https://doi.org/10.1182/blood-2018-04-842260.
Article CAS PubMed PubMed Central Google Scholar
Gevaert E, Zhang N, Krysko O, Lan F, Holtappels G, De Ruyck N, Nauwynck H, et al. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation. J Allergy Clin Immunol. 2017;139(6):1849-1860.e6. https://doi.org/10.1016/j.jaci.2017.01.019.
Article CAS PubMed Google Scholar
Delemarre T, Bochner BS, Simon HU, Bachert C. Rethinking neutrophils and eosinophils in chronic rhinosinusitis. J Allergy Clin Immunol. 2021;S0091–6749(21):00545–55. https://doi.org/10.1016/j.jaci.2021.03.024.
Cao Y, Chen F, Sun Y, Hong H, Wen Y, Lai Y, Xu Z, et al. LL-37 promotes neutrophil extracellular trap formation in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2019;49(7):990–9. https://doi.org/10.1111/cea.13408.
Article CAS PubMed Google Scholar
Hwang CS, Park SC, Cho HJ, Park DJ, Yoon JH, Kim CH. Eosinophil extracellular trap formation is closely associated with disease severity in chronic rhinosinusitis regardless of nasal polyp status. Sci Rep. 2019;9(1):8061. https://doi.org/10.1038/s41598-019-44627-z.
Article CAS PubMed PubMed Central Google Scholar
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev. 2022;31(163):210241. https://doi.org/10.1183/16000617.0241-2021.
Takei H, Araki A, Watanabe H, Ichinose A, Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 1996;59(2):229–40. https://doi.org/10.1002/jlb.59.2.229.
Article CAS PubMed Google Scholar
Neumann A, Berends ETM, Nerlich A, Molhoek EM, Gallo RL, Meerloo T, Nizet V, et al. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J. 2014;464(1):3–11. https://doi.org/10.1042/BJ20140778.
Article CAS PubMed Google Scholar
Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118(13):2737–53. https://doi.org/10.1093/cvr/cvab329.
Article CAS PubMed Google Scholar
Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, Migliorini P. Neutrophil extracellular traps (NET) induced by different stimuli: a comparative proteomic analysis. PLoS One. 2019;14(7):e0218946. https://doi.org/10.1371/journal.pone.0218946.
Zou Y, Chen X, He B, Xiao J, Yu Q, Xie B, Yang S, et al. Neutrophil extracellular traps induced by cigarette smoke contribute to airway inflammation in mice. Exp Cell Res. 2020;389(1):111888. https://doi.org/10.1016/j.yexcr.2020.111888.
Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis E, et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol. 2014;233(3):294–307. https://doi.org/10.1002/path.4359.
Article CAS PubMed Google Scholar
Ravindran M, Khan MA, Palaniyar N. Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules. 2019;9(8):365. https://doi.org/10.3390/biom9080365.
Article CAS PubMed PubMed Central Google Scholar
Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry Moscow. 2020;85(10):1178–90. https://doi.org/10.1134/S0006297920100065.
Article CAS PubMed Google Scholar
Pilsczek FH, Salina D, Poon KKH, Fahey C, Yipp BG, Sibley CD, Robbins SM, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185(12):7413–25. https://doi.org/10.4049/jimmunol.1000675.
Article CAS PubMed Google Scholar
Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol. 2016;7:302. https://doi.org/10.3389/fimmu.2016.00302.
Article CAS PubMed PubMed Central Google Scholar
Liu L, Mao Y, Xu B, Zhang X, Fang C, Ma Y, Men K, et al. Induction of neutrophil extracellular traps during tissue injury: involvement of STING and Toll-like receptor 9 pathways. Cell Prolif. 2020;53(10):e12775. https://doi.org/10.1111/cpr.12775.
Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75–7. https://doi.org/10.1038/nchembio.496.
Article CAS PubMed Google Scholar
Vorobjeva N, Prikhodko A, Galkin I, Pletjushkina O, Zinovkin R, Sud’ina G, Chernyak B, et al. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur J Cell Biol. 2017;96(3):254–265. https://doi.org/10.1016/j.ejcb.2017.03.003.
Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91. https://doi.org/10.1083/jcb.201006052.
Article CAS PubMed PubMed Central Google Scholar
Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in NET formation. Front Immunol. 2012;3:360. https://doi.org/10.3389/fimmu.2012.00360.
Article PubMed PubMed Central Google Scholar
Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184(2):205–13. https://doi.org/10.1083/jcb.200806072.
Article CAS PubMed PubMed Central Google Scholar
Lewis HD, Liddle J, Coote JE, Atkinson SJ, Barker MD, Bax BD, Bicker KL, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189–91. https://doi.org/10.1038/nchembio.1735.
Article CAS PubMed PubMed Central Google Scholar
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–9. https://doi.org/10.1038/nm1565.
Article CAS PubMed Google Scholar
Byrd AS, O’Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix–based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol. 2013;190(8):4136–48. https://doi.org/10.4049/jimmunol.1202671.
Article CAS PubMed Google Scholar
Yipp BG, Petri B, Salina D, Jenne CN, Scott BNV, Zbytnuik LD, Pittman K, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–93. https://doi.org/10.1038/nm.2847.
Article CAS PubMed PubMed Central Google Scholar
Jorch SK. An emerging role for neutrophil extracellular traps in noninfectious disease. nature medicine. 2017;23(3):9. https://doi.org/10.1038/nm.4294.
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81. https://doi.org/10.3389/fimmu.2017.00081.
Article CAS PubMed PubMed Central Google Scholar
Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli Killing by Neutrophil Elastase. Science. 2000;289(5482):1185–7. https://doi.org/10.1126/science.289.5482.1185.
Article CAS PubMed Google Scholar
Hahn S, Giaglis S, Chowdury CS, Hösli I, Hasler P. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol. 2013;35(4):439–53.
Comments (0)