Induction of bioactive constituents and antioxidant enzyme activities in Achillea fragrantissima (Forskal) callus cultures using ZnO nanoparticles

Abbade LC, de Oliveira Paiva PD, Paiva R, Graciano MHP (2010) Growth curve and biochemical analyses of callus of Ipe-branco (Tabebuia roseo alba (Ridl.) Sand.). Naturalia 33:45–56

Google Scholar 

Abd EL-Fattah A, Ali S, Aly H, AbdAlla H, Shalaby N, Saleh M (2018) Therapeutic potential of Achillea fragrantissima extracts in amelioration of high-fat diet and low dose streptozotocin diabetic rats. J Complement Med Res 7:115–130. https://doi.org/10.5455/jcmr.20180121122758

Article  Google Scholar 

Adil M, Ren X, Il KD, Thi LT, Jeong BR (2018) Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Mol Biol Rep 45:1919–1927. https://doi.org/10.1007/s11033-018-4340-3

Article  CAS  PubMed  Google Scholar 

Ahmad S, Mfarrej MFB, Elesawi MA, Waseem M, Alatawi A, Nafees M, Saleem MH, Rizwan M, Yasmeen T, Anayat A, Ali S (2022) Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicol Environ Saf 230:e113142. https://doi.org/10.1016/j.ecoenv.2021.113142

Article  CAS  Google Scholar 

Ahmed D, Baig H, Zara S (2012) Seasonal variation of phenolics, flavonoids, antioxidant and lipid peroxidation inhibitory activity of methanolic extract of Melilotus indicus and its sub-fractions in different solvents. Int J Phytomed 4:326–332 (http://www.arjournals.org/index.php/ijpm/index)

Google Scholar 

Alam SMM, Siddika S, Haque ME, Islam MA, Mukherjee A, Sikdar B (2016) Genetic diversity of some upland and lowland rice cultivars in Bangladesh using RAPD, ISSR and SSR markers. Nucleus 59:15–23. https://doi.org/10.1007/s13237-015-0148-x

Article  Google Scholar 

Alhujaily M, Albukhaty S, Yusuf M, Mohammed MKA, Sulaiman GM, Al-Karagoly H, Alyamani AA, Albaqami J, AlMalki FA (2022) Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering 9:e541. https://doi.org/10.3390/bioengineering9100541

Article  CAS  Google Scholar 

Al-Qudah T, Mahmood SH, Abu-Zurayk R, Shibli R, Khalaf A, Lambat TL, Chaudhary RG (2022) Nanotechnology applications in plant tissue culture and molecular genetics: a holistic approach. Curr Nanosci 18:442–464

Article  Google Scholar 

Alsohaili S (2018) Seasonal variation in the chemical composition and antimicrobial activity of essential oil extracted from Achillea fragrantissima grown in Northern - Eastern Jordanian desert. J Essent Oil-Bearing Plants 21:139–145. https://doi.org/10.1080/0972060X.2018.1446848

Article  CAS  Google Scholar 

Amom T, Tikendra L, Rahaman H, Potshangbam A, Nongdam P (2018) Evaluation of genetic relationship between 15 bamboo species of North-East India based on ISSR marker analysis. Mol Biol Res Commun 7:7–15. https://doi.org/10.22099/mbrc.2018.28378.1303

Asl KR, Hosseini B, Sharafi A, Palazon J (2019) Influence of nano-zinc oxide on tropane alkaloid production, h6h gene transcription and antioxidant enzyme activity in Hyoscyamus reticulatus L. hairy roots. Eng Life Sci 19:73–89. https://doi.org/10.1002/elsc.201800087

Article  CAS  PubMed  Google Scholar 

Atienzar FA, Cordi B, Donkin ME, Evenden AJ, Jha AN, Depledge MH (2000) Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmata. Aquat Toxicol 50:1–12. https://doi.org/10.1016/S0166-445X(99)00100-9

Article  CAS  PubMed  Google Scholar 

Bahmankar M, Mortazavian SMM, Tohidfar M, Sadat Noori SA, Izadi DA, Corrado G, Rao R (2017) Chemical compositions, somatic embryogenesis, and somaclonal variation in cumin. Biomed Res Int 2017:e7283806. https://doi.org/10.1155/2017/7283806

Article  CAS  Google Scholar 

Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566. https://doi.org/10.1016/0003-2697(87)90489-1

Article  CAS  PubMed  Google Scholar 

Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Article  CAS  Google Scholar 

Chahardoli A, Karimi N, Ma X, Qalekhani F (2020) Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Sci Rep 10:3847. https://doi.org/10.1038/s41598-020-60841-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

CAS  Google Scholar 

Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

Article  CAS  PubMed  Google Scholar 

Clarke JD (2009) Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc. pdb.prot5177. doi:https://doi.org/10.1101/pdb.prot5179

Dahiya S, Sharma R, Gautam P, Panchal P, Chaudhary S, Sharma A, Almáši M, Nehra SP (2023) Eco-friendly phytofabrication of Ficus benjamina L. based ZnO-doped g-C3N4 nanocomposites for remarkable photocatalysis and antibacterial applications. Chemosphere 339:e139707. https://doi.org/10.1016/j.chemosphere.2023.139707

Article  CAS  Google Scholar 

de Almeida NV, Rivas EB, Cardoso JC (2022) Somatic embryogenesis from flower tepals of Hippeastrum aiming regeneration of virus-free plants. Plant Sci 317:e111191. https://doi.org/10.1016/j.plantsci.2022.111191

Article  CAS  Google Scholar 

de la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174. https://doi.org/10.1351/pac-con-12-09-05

Article  Google Scholar 

Debnath SC, Vyas P, Goyali JC, Igamberdiev AU (2012) Morphological and molecular analyses in micropropagated berry plants acclimatized under ex vitro condition. Can J Plant Sci 92:1065–1073. https://doi.org/10.4141/CJPS2011-194

Article  Google Scholar 

Elsharkawy ER, Alghanem SM, Elmorsy E (2021) Effect of habitat variations on the chemical composition, antioxidant, and antimicrobial activities of Achillea fragrantissima (Forssk) Sch. Bip Biotechnol Rep 29:e00581. https://doi.org/10.1016/j.btre.2020.e00581

Article  CAS  Google Scholar 

Faizan M, Faraz A, Mir AR, Hayat S (2021) Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. J Plant Growth Regul 40:101–115. https://doi.org/10.1007/s00344-019-10059-2

Article  CAS  Google Scholar 

Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56:678–686. https://doi.org/10.1007/s11099-017-0717-0

Article  CAS  Google Scholar 

Farouk A, Ali H, Al-Khalifa A, Mohsen M, Fikry R (2019) Comparative study for the volatile constituents and the antioxidant activity of the essential oils of dried Achillea fragrantissima cultivated in Madinah Monawara, Saudi Arabia and Egypt. Int J Food Prop 22:395–404. https://doi.org/10.1080/10942912.2019.1588901

Article  CAS  Google Scholar 

Fouda MS, Hendawey MH, Hegazi GA, Sharada HM, El-Arabi NI, Attia ME, Soliman ERS (2021) Nanoparticles induce genetic, biochemical, and ultrastructure variations in Salvadora persica callus. J Genet Eng Biotechnol 19:1–12

Article  Google Scholar 

Gaafar RM, Diab RH, Halawa ML, El-Shanshory AR, El-Shaer A, Hamouda MM (2020) Role of zinc oxide nanoparticles in ameliorating salt tolerance in soybean. Egypt J Bot 60:733–747. https://doi.org/10.21608/ejbo.2020.26415.1475

Gauba A, Hari SK, Ramamoorthy V, Vellasamy S, Govindan G, Valan Arasu M (2023) The versatility of green synthesized zinc oxide nanoparticles in sustainable agriculture: a review on metal-microbe interaction that rewards agriculture. Physiol Mol Plant Pathol 125:e102023. https://doi.org/10.1016/j.pmpp.2023.102023

Article  CAS  Google Scholar 

Ghasemi B, Hosseini R, Dehghan Nayeri F (2015) Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turk J Bot 39:769–777. https://doi.org/10.3906/bot-1410-9

Article  CAS  Google Scholar 

Ghorai N, Chakraborty S, Gucchait S, Saha SK, Biswas S (2012) Estimation of total terpenoids concentration in plant tissues using a monoterpene, linalool as standard reagent. Protoc Exch 5:1–6. https://doi.org/10.1038/protex.2012.055

Article  Google Scholar 

Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Toxicol Environ Mutagen 807:25–32. https://doi.org/10.1016/j.mrgentox.2016.07.006

Article  CAS  Google Scholar 

Godel-Jędrychowska K, Milewska-Hendel A, Sala K, Barański R, Kurczyńska E (2023) The impact of gold nanoparticles on somatic embryogenesis using the example of Arabidopsis thaliana. Int J Mol Sci 24:e10356. https://doi.org/10.3390/ijms241210356

Article  CAS  Google Scholar 

Greeshma KP, Thamizselvi R (2023) Phytogenic synthesis of ZnO nanoparticles from Catharanthus roseus and Morinda citrifolia leaf extract and its promising multifunctional biological applications. J Drug Deliv Sci Technol 87:e104785. https://doi.org/10.1016/j.jddst.2023.104785

Article  CAS  Google Scholar 

Hiai S, Oura H, Hamanaka H, Odaka Y (1975) A color reaction of panaxadiol with vanillin and sulfuric acid. Planta Med 28:131–138. https://doi.org/10.1055/s-0028-1097841

Article  CAS  PubMed  Google Scholar 

Izzatullayeva V, Akparov Z, Babayeva S, Ojaghi J, Abbasov M (2014) Efficiency of using RAPD and ISSR markers in evaluation of genetic diversity in sugar beet. Turkish J Biol 38:429–438. https://doi.org/10.3906/biy-1312-35

Article  CAS  Google Scholar 

Javed R, Ahmed M, ul Haq I, Nisa S, Zia M (2017) PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater Sci Eng C 79:108–115. https://doi.org/10.1016/j.msec.2017.05.006

Article  CAS  Google Scholar 

Javed R, Yucesan B, Zia M, Gurel E (2018) Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech 20:194–201. https://doi.org/10.1007/s12355-017-0539-1

Article  CAS  Google Scholar 

Jindal KK, Singh RN (1975) Phenolic content in male and female Carica papaya : a possible physiological marker for sex identification of vegetative seedlings. Physiol Plant 33:104–107. https://doi.org/10.1111/j.13

留言 (0)

沒有登入
gif