The ageing thyroid: implications for longevity and patient care

Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).

Article  CAS  PubMed  Google Scholar 

Bowers, J. et al. Thyroid hormone signaling and homeostasis during aging. Endocr. Rev. 34, 556–589 (2013).

Article  CAS  PubMed  Google Scholar 

Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor, P. N. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 14, 301–316 (2018).

Article  PubMed  Google Scholar 

McDermott, M. T. & Ridgway, E. C. Subclinical hypothyroidism is mild thyroid failure and should be treated. J. Clin. Endocrinol. Metab. 86, 4585–4590 (2001).

Article  CAS  PubMed  Google Scholar 

Cooper, D. S. & Biondi, B. Subclinical thyroid disease. Lancet 379, 1142–1154 (2012).

Article  PubMed  Google Scholar 

Schreiber, G. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J. Endocrinol. 175, 61–73 (2002).

Article  CAS  PubMed  Google Scholar 

Bianco, A. C. et al. Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40, 1000–1047 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Szarek, E., Cheah, P. S., Schwartz, J. & Thomas, P. Molecular genetics of the developing neuroendocrine hypothalamus. Mol. Cell Endocrinol. 323, 115–123 (2010).

Article  CAS  PubMed  Google Scholar 

Steinfelder, H. J. et al. Thyrotropin-releasing hormone regulation of human TSHB expression: role of a pituitary-specific transcription factor (Pit-1/GHF-1) and potential interaction with a thyroid hormone-inhibitory element. Proc. Natl Acad. Sci. USA 88, 3130–3134 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva, J. E. & Larsen, P. R. Pituitary nuclear 3,5,3′-triiodothyronine and thyrotropin secretion: an explanation for the effect of thyroxine. Science 198, 617–620 (1977).

Article  CAS  PubMed  Google Scholar 

Fonseca, T. L. et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Invest. 123, 1492–1500 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fliers, E., Kalsbeek, A. & Boelen, A. Beyond the fixed setpoint of the hypothalamus–pituitary–thyroid axis. Eur. J. Endocrinol. 171, R197–R208 (2014).

Article  CAS  PubMed  Google Scholar 

O’Brian, J. T. et al. Thyroid hormone homeostasis in states of relative caloric deprivation. Metabolism 29, 721–727 (1980).

Article  PubMed  Google Scholar 

Kopp, P. The TSH receptor and its role in thyroid disease. Cell Mol. Life Sci. 58, 1301–1322 (2001).

Article  CAS  PubMed  Google Scholar 

Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).

Article  CAS  PubMed  Google Scholar 

Visser, W. E., Friesema, E. C. & Visser, T. J. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25, 1–14 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sap, J. et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640 (1986).

Article  CAS  PubMed  Google Scholar 

Thompson, C. C., Weinberger, C., Lebo, R. & Evans, R. M. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237, 1610–1614 (1987).

Article  CAS  PubMed  Google Scholar 

Flamant, F. et al. Thyroid hormone signaling pathways: time for a more precise nomenclature. Endocrinology 158, 2052–2057 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, X., Kambe, F., Moeller, L. C., Refetoff, S. & Seo, H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol. Endocrinol. 19, 102–112 (2005).

Article  CAS  PubMed  Google Scholar 

Maia, A. L., Kim, B. W., Huang, S. A., Harney, J. W. & Larsen, P. R. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J. Clin. Invest. 115, 2524–2533 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pilo, A. et al. Thyroidal and peripheral production of 3,5,3′-triiodothyronine in humans by multicompartmental analysis. Am. J. Physiol. 258, E715–E726 (1990).

CAS  PubMed  Google Scholar 

Gudernatsch, J. F. Feeding experiments on tadpoles. I. The influence of specific organs given as food on growth and differentiation. A contribution to the knowledge of organs with internal secretion. Arch. Entwicklungsmech Org. 35, 457–483 (1912).

Article  Google Scholar 

Furlow, J. D. & Neff, E. S. A developmental switch induced by thyroid hormone: xenopus laevis metamorphosis. Trends Endocrinol. Metab. 17, 40–47 (2006).

Article  PubMed  Google Scholar 

Yoshimura, T. et al. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426, 178–181 (2003).

Article  CAS  PubMed  Google Scholar 

Mai, W. et al. Thyroid hormone receptor α is a molecular switch of cardiac function between fetal and postnatal life. Proc. Natl Acad. Sci. USA 101, 10332–10337 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams, F. L. et al. Developmental trends in cord and postpartum serum thyroid hormones in preterm infants. J. Clin. Endocrinol. Metab. 89, 5314–5320 (2004).

Article  CAS  PubMed  Google Scholar 

Furumoto, H. et al. An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Mol. Cell Biol. 25, 124–135 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bianco, A. C. & Kim, B. W. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 116, 2571–2579 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

Article  CAS  PubMed  Google Scholar 

Mourouzis, I., Politi, E. & Pantos, C. Thyroid hormone and tissue repair: new tricks for an old hormone? J. Thyroid. Res. 2013, 312104 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Luongo, C., Dentice, M. & Salvatore, D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat. Rev. Endocrinol. 15, 479–488 (2019).

Article  PubMed  Google Scholar 

Remaud, S. et al. Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain. eLlife 6, e29996 (2017).

Article  Google Scholar 

Hollowell, J. G. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).

Article  CAS  PubMed  Google Scholar 

Surks, M. I. & Hollowell, J. G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 4575–4582 (2007).

Article  CAS  PubMed  Google Scholar 

Surks, M. I. & Boucai, L. Age- and race-based serum thyrotropin reference limits. J. Clin. Endocrinol. Metab. 95, 496–502 (2010).

Article  CAS 

留言 (0)

沒有登入
gif