A feasibility study on using fNIRS brain signals to recognize personal thermal sensation and thermal comfort conditions

Oi H, Hashimoto T, Nozawa T, Kanno A, Kawata N, Hirano K, et al. Neural correlates of ambient thermal sensation: An fMRI study. Sci Rep. 2017;7:1–11.

Article  CAS  Google Scholar 

Kim J, Schiavon S, Brager G. Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control. Build Environ. 2018;132:114–24.

Article  Google Scholar 

Liu W, Lian Z, Liu Y. Heart rate variability at different thermal comfort levels. Eur J Appl Physiol. 2008;103:361–6.

Article  PubMed  Google Scholar 

Fan X, Liu W, Wargocki P. Physiological and psychological reactions of sub-tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70. Indoor Air. 2019;29:215–30.

Article  PubMed  Google Scholar 

Mäkinen TM, Palinkas LA, Reeves DL, Pääkkönen T, Rintamäki H, Leppäluoto J, et al. Effect of repeated exposures to cold on cognitive performance in humans. Physiol Behav. 2006;87:166–76.

Article  PubMed  Google Scholar 

ANSI/ASHRAE Standard 55-2004: Thermal Environmental Conditions for Human Occupancy Approved. GA: American Society of Heating, Refrigeration and Air-Conditioning Engineers.

Sung EJ, Yoo SS, Yoon HW, Oh SS, Han Y. Brain activation related to affective dimension during thermal stimulation in humans: a functional magnetic resonance imaging study. Int J Neurosci. 2007;117:1011–27.

Article  PubMed  Google Scholar 

Kanosue K, Sadato N, Okada T, Yoda T. Brain activation during whole body cooling in humans studied with functional magnetic resonance imaging. Neurosci Lett. 2002;329:157–60.

Article  CAS  PubMed  Google Scholar 

Rolls ET, Grabenhorst F, Parris BA. Warm pleasant feelings in the brain. Neuroimage. 2008;41:1504–13.

Article  PubMed  Google Scholar 

Aizawa Y, Harada T, Nakata H, Tsunakawa M, Sadato N, Nagashima K. Assessment of brain mechanisms involved in the processes of thermal sensation, pleasantness/unpleasantness, and evaluation. IBRO Rep. 2019;6:54–63.

Article  PubMed  PubMed Central  Google Scholar 

Lv B, Su C, Yang L, Wu T. Effects of stimulus mode and ambient temperature on cerebral responses to local thermal stimulation: An EEG study. Int J Psychophysiol. 2017;113:17–22.

Article  PubMed  Google Scholar 

Davis KD, Kwan CL, Crawley AP, Mikulis DJ. Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol. 1998;80:1533–46.

Article  CAS  PubMed  Google Scholar 

Becerra LR, Breiter HC, Stojanovic M, Fishman S, Edwards A, Comite AR, et al. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn Reson Med J Int Soc Magn Reson Med. 1999;41:1044–57.

Article  CAS  Google Scholar 

Craig AD, Chen K, Bandy D, Reiman EM. Thermosensory activation of insular cortex. Nat Neurosci. 2000;3:184–90.

Article  CAS  PubMed  Google Scholar 

Casey KL, Minoshima S, Morrow TJ, Koeppe RA. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol. 1996;76:571–81.

Article  CAS  PubMed  Google Scholar 

Moulton EA, Pendse G, Becerra LR, Borsook D. BOLD responses in somatosensory cortices better reflect heat sensation than pain. J Neurosci. 2012;32:6024–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peltz E, Seifert F, DeCol R, Dörfler A, Schwab S, Maihöfner C. Functional connectivity of the human insular cortex during noxious and innocuous thermal stimulation. Neuroimage. 2011;54:1324–35.

Article  PubMed  Google Scholar 

Muzik O, Diwadkar VA. In vivo correlates of thermoregulatory defense in humans: Temporal course of sub‐cortical and cortical responses assessed with fMRI. Hum Brain Mapp. 2016;37:3188–202.

Article  PubMed  PubMed Central  Google Scholar 

Hou L, Watanuki K Analysis of Brain Activity during Local Hot-Cold Stimulus Using Near-Infrared Spectroscopy (Analysis of Brain Activity During Hot Stimulation). In2015 IEEE International Conference on Systems, Man, and Cybernetics 2015:1526-31.

Yao Y, Lian Z, Liu W, Shen Q. Experimental study on physiological responses and thermal comfort under various ambient temperatures. Physiol Behav. 2008;93:310–21.

Article  CAS  PubMed  Google Scholar 

Yao Y, Lian Z, Liu W, Jiang C. Heart rate variation and electroencephalograph - The potential physiological factors for thermal comfort study. Indoor Air. 2009;19:93–101.

Article  CAS  PubMed  Google Scholar 

Watanuki K, Hou L, Kondou Y Evaluation of Human Thermal Comfort Using Near-Infrared Spectroscopy. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2014 Aug 17 (Vol. 46285, p. V01AT02A089). American Society of Mechanical Engineers.

Mansi SA, Pigliautile I, Arnesano M, Pisello AL A novel methodology for human thermal comfort decoding via physiological signals measurement and analysis. Building Environ. 2022; https://doi.org/10.1016/j.buildenv.2022.109385.

Lu M, Hu S, Hu Y, Zheng Y, Liu X, Zhao X, et al. Critical dynamic characteristics of brain activity in thermal comfort state. Building Environ. 2023; https://doi.org/10.1016/j.buildenv.2023.110632.

Zhu M, Liu W, Wargocki P. Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity. J Expo Sci Environ Epidemiol. 2020;30:285–98.

Article  PubMed  Google Scholar 

Pan L, Zheng H, Li T Effects of the indoor environment on EEG and thermal comfort assessment in males. Building and Environment. 2023; https://doi.org/10.1016/j.buildenv.2022.109761.

Lan L, Lian Z, Pan L. The effects of air temperature on office workers’ well-being, workload and productivity-evaluated with subjective ratings. Appl Erg. 2010;42:29–36.

Article  Google Scholar 

Nayak T, Zhang T, Mao Z, Xu X, Zhang L, J.pack D, et al. Prediction of Human Performance Using Electroencephalography under Different Indoor Room Temperatures. Brain Sci. 2018; https://doi.org/10.3390/brainsci8040074.

Zhang F, Haddad S, Nakisa B, Rastgoo NM, Candido C, Tjondronegoro D, et al. The effects of higher temperature setpoints during summer on office workers’ cognitive load and thermal comfort. Build Environ. 2017;123:176–88.

Article  Google Scholar 

Tanabe SI, Nishihara N, Haneda M. Indoor temperature, productivity, and fatigue in office tasks. HVAC R Res. 2007;13:623–33.

Article  Google Scholar 

Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett. 1993;154:101–4.

Article  CAS  PubMed  Google Scholar 

Shan X, Yang EH, Zhou J, Chang VWC. Human-building interaction under various indoor temperatures through neural-signal electroencephalogram (EEG) methods. Build Environ. 2018;129:46–53.

Article  Google Scholar 

Shan X, Yang EH Supervised machine learning of thermal comfort under different indoor temperatures using EEG measurements. Energy Build. 2020; https://doi.org/10.1016/j.enbuild.2020.110305.

Wu M, Li H, Qi H. Using electroencephalogram to continuously discriminate feelings of personal thermal comfort between uncomfortably hot and comfortable environments. Indoor Air. 2020;30:534–43.

Article  PubMed  Google Scholar 

Sangani S, Lamontagne A, Fung J. Chapter 15 - Cortical mechanisms underlying sensorimotor enhancement promoted by walking with haptic inputs in a virtual environment. Prog Brain Res. 2015;218:313–30.

Article  PubMed  Google Scholar 

BS EN ISO 7730: Ergonomics of the thermal environment, 2005.

ISO-9886. Ergonomics — Evaluation of thermal strain by physiological measurements. In International Standard Organization; 2004.

Shahzad S, Brennan J, Theodossopoulos D, Calautit JK, Hughes BR. Does a neutral thermal sensation determine thermal comfort? Build Serv Eng Res Technol. 2018;39:183–95.

Article  Google Scholar 

Vendrell P, Junqué C, Pujol J, Jurado MA, Molet J, Grafman J. The role of prefrontal regions in the Stroop task. Neuropsychologia. 1995;33:341–52.

Article  CAS  PubMed  Google Scholar 

Barkley-Levenson E, Xue F, Droutman V, Miller LC, Smith BJ, Jeong D, et al. Prefrontal cortical activity during the Stroop task: new insights into the why and the who of real-world risky sexual behavior. Ann Behav Med. 2018;52:367–79.

Article  PubMed  PubMed Central  Google Scholar 

Dadgostar M, Setarehdan SK, Shahzadi S, Akin A. Functional connectivity of the PFC via partial correlation. Opt (Stuttg). 2016;127:4748–54.

Article  CAS  Google Scholar 

Zhao L, Chen Y, Schaffner DW. Comparison of logistic regression and linear regression in modeling percentage data. Appl Environ Microbiol. 2001;67:2129–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng C-YJ, Lee KL, Ingersoll GM. An introduction to logistic regression analysis and reporting. J Educ Res. 2002;96:3–14.

Article  Google Scholar 

Bender R, Grouven U. Ordinal logistic regression in medical research. J R Coll Physicians Lond. 1997;31:546–51.

CAS  PubMed  PubMed Central  Google Scholar 

Warner P. Ordinal logistic regression. J Fam Plan Reprod Heal Care. 2008;34:169–70.

Article  Google Scholar 

Tartarini F, Schiavon S, Cheung T, Hoyt T CBE Thermal Comfort Tool: online tool for thermal comfort calculations and visualizations. 2020. Available from: https://comfort.cbe.berkeley.edu/

Frangos CC, Frangos CC, Sotiropoulos I. Problematic internet use among Greek university students: an ordinal logistic regression with risk factors of negative psychological beliefs, pornographic sites, and online games. Cyberpsychology, Behav Soc Netw. 2011;14:51–8.

Article  Google Scholar 

Buckner RL, Andrews‐Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N. Y Acad Sci. 2008;1124:1–38.

Article  PubMed  Google Scholar 

Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the prefrontal cortex: An integrative review. Psycholo Bull. 2017;143:1033–81.

Article 

留言 (0)

沒有登入
gif