The Impact of Spine Pathology on Posterior Ligamentous Complex Structure and Function

Panjabi MM. A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2006;15:668–76. https://doi.org/10.1007/s00586-005-0925-3. Review article describing a hypothesis of the role of spinal ligament in spinal pathology

Article  Google Scholar 

Burke JF, Scheer JK, Lau D, Safaee MM, Lui A, Jha S, et al. Failure in adult spinal deformity surgery: a comprehensive review of current rates, mechanisms, and prevention strategies. Spine. 2022;47:1337–50. https://doi.org/10.1097/BRS.0000000000004435.

Article  PubMed  Google Scholar 

Hart RA, McCarthy I, Ames CP, Shaffrey CI, Hamilton DK, Hostin R. Proximal junctional kyphosis and proximal junctional failure. Neurosurg Clin N Am. 2013;24:213–8. https://doi.org/10.1016/j.nec.2013.01.001.

Article  PubMed  Google Scholar 

Kim HJ, Iyer S. Proximal junctional kyphosis. J Am Acad Orthop Surg. 2016;24:318–26. https://doi.org/10.5435/JAAOS-D-14-00393.

Article  PubMed  Google Scholar 

Yagi M, Rahm M, Gaines R, Maziad A, Ross T, Kim HJ, et al. Characterization and surgical outcomes of proximal junctional failure in surgically treated patients with adult spinal deformity. Spine. 2014;39:E607-614. https://doi.org/10.1097/BRS.0000000000000266.

Article  PubMed  Google Scholar 

Cho SK, Caridi J, Kim JS, Cheung ZB, Gandhi A, Inzana J. Attenuation of proximal junctional kyphosis using sublaminar polyester tension bands: a biomechanical study. World Neurosurg. 2018;120:e1136–42. https://doi.org/10.1016/j.wneu.2018.08.244.

Article  PubMed  Google Scholar 

Wang W, Sun X, Zhang T, Sun S, Kong C, Ding J, et al. Comparison between topping-off technology and posterior lumbar interbody fusion in the treatment of chronic low back pain: a meta-analysis. Medicine (Baltimore). 2020;99:e18885. https://doi.org/10.1097/MD.0000000000018885. Meta-analysis describing benefit of topping-off techniques in preventing adjacent segment disease post-operatively compared to posterior lumbar interbody fusion alone.

Article  PubMed  Google Scholar 

Sun X, Chen Z, Sun S, Wang W, Zhang T, Kong C, et al. Dynamic stabilization adjacent to fusion versus posterior lumbar interbody fusion for the treatment of lumbar degenerative disease: a meta-analysis. BioMed Res Int. 2020;2020:9309134. https://doi.org/10.1155/2020/9309134. Systematic review describing benefit of dynamic stabilization techniques at the upper instrumented vertebrae in reducing adjacent segment pathology compared to rigid posterior lumbar interbody fusion alone.

Article  PubMed  PubMed Central  Google Scholar 

Helgeson MD, Shah SA, Newton PO, Clements DH, Betz RR, Marks MC, et al. Evaluation of proximal junctional kyphosis in adolescent idiopathic scoliosis following pedicle screw, hook, or hybrid instrumentation. Spine. 2010;35:177–81. https://doi.org/10.1097/BRS.0b013e3181c77f8c.

Article  PubMed  Google Scholar 

Vercoulen TFG, Doodkorte RJP, Roth A, de Bie R, Willems PC. Instrumentation techniques to prevent proximal junctional kyphosis and proximal junctional failure in adult spinal deformity correction: a systematic review of clinical studies. Glob Spine J. 2022;12:1282–96. https://doi.org/10.1177/21925682211034500.

Article  Google Scholar 

Safaee MM, Deviren V, Dalle Ore C, Scheer JK, Lau D, Osorio JA, et al. Ligament augmentation for prevention of proximal junctional kyphosis and proximal junctional failure in adult spinal deformity. J Neurosurg Spine. 2018;28:512–9. https://doi.org/10.3171/2017.9.SPINE1710.

Article  PubMed  Google Scholar 

Buell TJ, Bess S, Xu M, Schwab FJ, Lafage V, Ames CP, et al. Optimal tether configurations and preload tensioning to prevent proximal junctional kyphosis: a finite element analysis. J Neurosurg Spine 2019;30(5):574–84. https://doi.org/10.3171/2018.10.SPINE18429.

Safaee MM, Haddad AF, Fury M, Maloney PR, Scheer JK, Lau D, et al. Reduced proximal junctional failure with ligament augmentation in adult spinal deformity: a series of 242 cases with a minimum 1-year follow-up. J Neurosurg Spine. 2021;35:752–60. https://doi.org/10.3171/2021.2.SPINE201987. Retrospective analysis of surgical ligament augmentation in 242 adult spinal deformity patients undergoing long spinal fusion that describes significant reductions in proximal junctional failure at 1-year follow up.

Article  PubMed  Google Scholar 

Bess S, Harris JE, Turner AWL, LaFage V, Smith JS, Shaffrey CI, et al. The effect of posterior polyester tethers on the biomechanics of proximal junctional kyphosis: a finite element analysis. J Neurosurg Spine. 2017;26:125–33. https://doi.org/10.3171/2016.6.SPINE151477.

Article  PubMed  Google Scholar 

Wang W, Sun X, Zhang T, Sun S, Kong C, Lu S. Topping-off technology versus posterior lumbar interbody fusion in the treatment of lumbar disc herniation: a meta-analysis. BioMed Res Int. 2020;2020:2953128. https://doi.org/10.1155/2020/2953128.

Article  PubMed  PubMed Central  Google Scholar 

Chang M-Y, Park Y, Ha JW, Zhang H-Y, Lee SH, Hong T-H, et al. Paraspinal lean muscle mass measurement using spine MRI as a predictor of adjacent segment disease after lumbar fusion: a propensity score-matched case-control analysis. AJR Am J Roentgenol. 2019;212(6):1310–17. https://doi.org/10.2214/AJR.18.20441.

Yagi M, Fujita N, Tsuji O, Nagoshi N, Asazuma T, Ishii K, et al. Low bone-mineral density is a significant risk for proximal junctional failure after surgical correction of adult spinal deformity: a propensity score-matched analysis. Spine. 2018;43:485–91. https://doi.org/10.1097/BRS.0000000000002355.

Article  PubMed  Google Scholar 

Anand N, Agrawal A, Ravinsky R, Khanderhoo B, Kahwaty S, Chung A. The prevalence of proximal junctional kyphosis (PJK) and proximal junctional failure (PJF) in patients undergoing circumferential minimally invasive surgical (cMIS) correction for adult spinal deformity: long-term 2- to 13-year follow-up. Spine Deform. 2021;9:1433–41. https://doi.org/10.1007/s43390-021-00319-1.

Article  PubMed  PubMed Central  Google Scholar 

Kim JS, Cheung ZB, Arvind V, Caridi J, Cho SK-W. Role of posterior ligamentous reinforcement in proximal junctional kyphosis: a cadaveric biomechanical study. Asian Spine J. 2019;13:68–76. https://doi.org/10.31616/asj.2018.0102.

Article  PubMed  Google Scholar 

Bizdikian AJ, El Rachkidi R. Posterior ligamentous complex injuries of the thoracolumbar spine: importance and surgical implications. Cureus. 2021;13:e18774. https://doi.org/10.7759/cureus.18774. Review article that describes the posterior ligamentous complex as the most important set of ligaments in thoracolumbar spine stability and the gaps in the literature regarding recognition and treatment of posterior ligamentous complex pathology.

Article  PubMed  PubMed Central  Google Scholar 

Olszewski AD, Yaszemski MJ, White AA. The anatomy of the human lumbar ligamentum flavum. New observations and their surgical importance. Spine. 1996;21:2307–12. https://doi.org/10.1097/00007632-199610150-00001.

Article  CAS  PubMed  Google Scholar 

Iwanaga J, Ishak B, Saga T, Singla A, Impastato D, Chapman JR, et al. The lumbar ligamentum flavum does not have two layers and is confluent with the interspinous ligament: anatomical study with application to surgical and interventional pain procedures. Clin Anat N Y N. 2020;33:34–40. https://doi.org/10.1002/ca.23437.

Article  Google Scholar 

Yahia LH, Aktouf N. Lumbar spine ligaments: a quantitative ultrastructure study. J Mater Sci Lett. 1990;9:509–13. https://doi.org/10.1007/BF00725859.

Article  Google Scholar 

Yahia H, Drouin G, Newman N. Structure-function relationship of human spinal ligaments. Z Mikrosk Anat Forsch. 1990;104:33–45.

CAS  PubMed  Google Scholar 

Venn G, Mehta MH, Mason RM. Characterisation of collagen from normal and scoliotic human spinal ligament. Biochim Biophys Acta. 1983;757:259–67. https://doi.org/10.1016/0304-4165(83)90116-2.

Article  CAS  PubMed  Google Scholar 

Iwanaga J, Simonds E, Yilmaz E, Schumacher M, Patel M, Tubbs RS. Anatomical and biomechanical study of the lumbar interspinous ligament. Asian J Neurosurg. 2019;14:1203–6. https://doi.org/10.4103/ajns.AJNS_87_19.

Article  PubMed  PubMed Central  Google Scholar 

Kirby MC, Sikoryn TA, Hukins DW, Aspden RM. Structure and mechanical properties of the longitudinal ligaments and ligamentum flavum of the spine. J Biomed Eng. 1989;11:192–6. https://doi.org/10.1016/0141-5425(89)90139-8.

Article  CAS  PubMed  Google Scholar 

Rissanen PM. The surgical anatomy and pathology of the supraspinous and interspinous ligaments of the lumbar spine with special reference to ligament ruptures. Acta Orthop Scand Suppl. 1960;46:1–100.

CAS  PubMed  Google Scholar 

Hukins DW, Kirby MC, Sikoryn TA, Aspden RM, Cox AJ. Comparison of structure, mechanical properties, and functions of lumbar spinal ligaments. Spine. 1990;15:787–95.

Article  CAS  PubMed  Google Scholar 

Willems J, Jull G, Ng J-F. An in vivo study of the primary and coupled rotations of the thoracic spine. Clin Biomech. 1996;11:311–6. https://doi.org/10.1016/0268-0033(96)00017-4.

Article  CAS  Google Scholar 

Panjabi MM, White AA. Basic biomechanics of the spine. Neurosurgery. 1980;7:76–93. https://doi.org/10.1227/00006123-198007000-00014. Landmark study on spinal biomechanics, describing the importance of coupling motion of functional spinal units in overall spine function, and how disruption of osteoligamentous stabilizers at a given level has consequences across the spine.

Article  CAS  PubMed  Google Scholar 

Panjabi MM, Goel VK, Takata K. Physiologic strains in the lumbar spinal ligaments. An in vitro biomechanical study 1981 Volvo Award in Biomechanics. Spine. 1982;7:192–203. https://doi.org/10.1097/00007632-198205000-00003. Biomechanical study of cadaveric lumbar spine ligaments detailing the importance of the posterior ligamentous complex ligaments in flexion.

Article  CAS  PubMed  Google Scholar 

Yahia H, Newman N. A light and electron microscopic study of spinal ligament innervation. Z Mikrosk Anat Forsch. 1989;103:664–74.

CAS  PubMed  Google Scholar 

Ambrosetti-Giudici S, Gédet P, Ferguson SJ, Chegini S, Burger J. Viscoelastic properties of the ovine posterior spinal ligaments are strain dependent. Clin Biomech Bristol Avon. 2010;25:97–102. https://doi.org/10.1016/j.clinbiomech.2009.10.017.

Article  PubMed  Google Scholar 

Lucas SR, Bass CR, Crandall JR, Kent RW, Shen FH, Salzar RS. Viscoelastic and failure properties of spine ligament collagen fascicles. Biomech Model Mechanobiol. 2009;8:487–98. https://doi.org/10.1007/s10237-009-0152-7.

Article  PubMed  Google Scholar 

Bass CR, Planchak CJ, Salzar RS, Lucas SR, Rafaels KA, Shender BS, et al. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments. Spine. 2007;32:E436-442. https://doi.org/10.1097/BRS.0b013e3180b7fa58.

Article  PubMed  Google Scholar 

Yahia LH, Audet J, Drouin G. Rheological properties of the human lumbar spine ligaments. J Biomed Eng. 1991;13:399–406.

留言 (0)

沒有登入
gif