Radiographic and Advanced Imaging Evaluation of Posterior Shoulder Instability

Owens BD, Campbell SE, Cameron KL. Risk factors for posterior shoulder instability in young athletes. Am J Sports Med. 2013;41:2645–9. https://doi.org/10.1177/0363546513501508.

Article  PubMed  Google Scholar 

Lanzi JT, Chandler PJ, Cameron KL, et al. Epidemiology of posterior glenohumeral instability in a young athletic population. Am J Sports Med. 2017;45:3315–21. https://doi.org/10.1177/0363546517725067.

Article  PubMed  Google Scholar 

Lee J, Woodmass JM, Bernard CD, et al. Nonoperative management of posterior shoulder instability: what are the long-term clinical outcomes. Clin J Sport Med. 2022;32(2):e116–20. https://doi.org/10.1097/JSM.0000000000000907.

Article  PubMed  Google Scholar 

Pastor MF, Smith T, Struck M, Wellmann M. Stability versus mobility of the shoulder. Biomechanical aspects in athletes Orthopade. 2014;43(3):209–14. https://doi.org/10.1007/s00132-013-2142-9.

Article  CAS  PubMed  Google Scholar 

Lugo R, Kung P, Ma CB. Shoulder biomechanics. Eur J Radiol. 2008;68(1):16–24. https://doi.org/10.1016/j.ejrad.2008.02.051.

Article  PubMed  Google Scholar 

De Coninck T, Ngai SS, Tafur M, Chung CB. Imaging the glenoid labrum and labral tears. Radiographics. 2016;36(6):1628–47. https://doi.org/10.1148/rg.2016160020. (PMID: 27726737).

Article  PubMed  Google Scholar 

Ishikawa H, Henninger HB, Kawakami J, et al. A stabilizing role of the glenoid labrum: the suction cup effect. J Shoulder Elbow Surg. 2023;32(5):1095–104. https://doi.org/10.1016/j.jse.2022.12.002.

Article  PubMed  Google Scholar 

Roy EA, Cheyne I, Andrews GT, Forster BB. Beyond the cuff: MR imaging of labroligamentous injuries in the athletic shoulder. Radiology. 2016;278(2):316–32. https://doi.org/10.1148/radiol.2015150364.

Article  PubMed  Google Scholar 

Provencher MT, LeClere LE, King S, et al. Posterior instability of the shoulder: diagnosis and management. Am J Sports Med. 2011;39(4):874–86. https://doi.org/10.1177/0363546510384232.

Article  PubMed  Google Scholar 

Lippitt S, Matsen F. Mechanisms of glenohumeral joint stability. Clin Orthop Relat Res. 1993;291:20–8.

Article  Google Scholar 

Matsen FA, Chebli C, Lippitt S. Principles for the evaluation and management of shoulder instability. J Bone Joint Surg Am. 2006;88(3):648–59.

Article  PubMed  Google Scholar 

Cruz SA, Castillow H, Chintapalli RT, et al. The clinical utility of additional axillary and Velpeau radiographs in the evaluation of suspected shoulder trauma. J Orthop Trauma. 2020;34(8):261–5. https://doi.org/10.1097/BOT.0000000000001760.

Article  Google Scholar 

Sanders TG, Jersey SL. Conventional radiography of the shoulder. Semin Roentgenol. 2005;40(3):207–22. https://doi.org/10.1053/j.ro.2005.01.012.

Article  PubMed  Google Scholar 

Alaia EF, Subhas N. Shoulder MR imaging and MR arthrography techniques: new advances. Magn Reason Imaging Clin N Am. 2020;28(2):153–63. https://doi.org/10.1016/j.mric.2019.12.001.

Article  Google Scholar 

Woertler K, Waldt S. MR imaging in sports-related glenohumeral instability. Eur Radiol. 2006;16:2622–36. https://doi.org/10.1007/s00330-006-0258-6.

Article  PubMed  PubMed Central  Google Scholar 

Waltz DM, Burge AJ, Steinbach L. Imaging of shoulder instability. Semin Musculoskelet Radiol. 2015;19(3):254–68. https://doi.org/10.1055/s-0035-1549319.

Article  Google Scholar 

•• Rixey A, Rhodes N, Murthy N, et al. Accuracy of MR arthrography in the detection of posterior glenoid labral injuries of the shoulder. Skeletal Radiol. 2023;52(2):175–81. https://doi.org/10.1007/s00256-022-04165-8. This study demonstrates the high sensitivity and specificity of MR arthrography for detection of posterior glenoid labral injuries.

Article  PubMed  Google Scholar 

Flannigan B, Kursunoglu-Brahme S, Snyder S, et al. MR arthrography of the shoulder: comparison with conventional MR imaging. AJR Am J Roentgenol. 1990;155(4):829–32. https://doi.org/10.2214/ajr.155.4.2119117.

Article  CAS  PubMed  Google Scholar 

Major NM, Browne J, Domzalski T, et al. Evaluation of the glenoid labrum with 3-T MRI: is intraarticular contrast necessary? AJR Am J Roentgenol. 2011;196(5):1139–44. https://doi.org/10.2214/AJR.08.1734.

Article  PubMed  Google Scholar 

• Smith TO, Drew BT, Toms AP. A meta-analysis of the diagnostic test accuracy of MRA and MRI for the detection of glenoid labral injury. Arch Orthop Trauma Surg. 2021;132(7):905–19. https://doi.org/10.1007/s00402-012-1493-8. Recent meta-analysis showing slightly increased sensitivity and specificity of MRA over conventional MRI for detection of glenohumeral labral injuries.

Article  Google Scholar 

Ajuied A, McGarvey CP, Harb Z, Smith CC, et al. Diagnosis of glenoid labral tears using 3-test MRI vs 3-tesla MRA: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2018;138(5):699–709. https://doi.org/10.1007/s00402-018-2894-0.

Article  PubMed  Google Scholar 

Rerko MA, Pan X, Donaldson C, et al. Comparison of various imaging techniques to quantify glenoid bone loss in shoulder instability. J Shoulder Elbow Surg. 2013;22(4):528–34. https://doi.org/10.1016/j.jse.2012.05.034.

Article  PubMed  Google Scholar 

Acid S, Le Corroller T, Aswad R, et al. Preoperative imaging of anterior shoulder instability: diagnostic effectiveness of MDCT arthrography and comparison with MR arthrography and arthroscopy. AJR Am J Roentgenol. 2012;198:661–661. https://doi.org/10.2214/AJR.11.7251.

Article  PubMed  Google Scholar 

Lecouvet FE, Simoni P, Koutaïssoff S, et al. Multidetector spiral CT arthrography of the shoulder: clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur J Radiol. 2008;68:120–36. https://doi.org/10.1016/j.ejrad.2008.02.025.

Article  PubMed  Google Scholar 

Green CK, Scanaliato JP, Sandler AB, et al. Risk factors for glenoid bone loss in the setting of posterior glenohumeral instability. Orthop J Sports Med. 2023;11(10):23259671231202300. https://doi.org/10.1177/23259671231202301.

Article  PubMed  PubMed Central  Google Scholar 

Hines A, Cook JB, Shaha JS, et al. Glenoid bone loss in posterior shoulder instability: prevalence and outcomes in arthroscopic treatment. Am J Sports Med. 2018;46(5):1053–7. https://doi.org/10.1177/0363546517750628.

Article  PubMed  Google Scholar 

• Bedrin MD, Owens BD, Dickens JF. Prospective evaluation of posterior glenoid bone loss after first-time and recurrent posterior glenohumeral instability events. Am J Sports Med. 2022;50(11):3028–35. https://doi.org/10.1177/03635465221115828This recent study demonstrates an association between glenoid bone loss and posterior glenohumeral instability events and increased degree of bone loss with recurrent instability events.

Article  PubMed  Google Scholar 

Arner JW, Ruzbarsky JJ, Midtgaard K, et al. Defining critical glenoid bone loss in posterior shoulder capsulolabral repair. Am J Sports Med. 2021;49(8):2013–9. https://doi.org/10.1177/03635465211016804.

Article  PubMed  Google Scholar 

Wolfe JA, Elsenbeck M, Nappo K, et al. Effect of posterior glenoid bone loss and retroversion on arthroscopic posterior glenohumeral stabilization. Am J Sports Med. 2020;48(11):2621–7. https://doi.org/10.1177/0363546520946101.

Article  PubMed  Google Scholar 

Lee RK, Griffith JF, Tong MM, et al. Glenoid bone loss: assessment with MR imaging. Radiology. 2013;267(2):496–502. https://doi.org/10.1148/radiol.12121681.

Article  PubMed  Google Scholar 

Bois AJ, Fening SD, Polster J, Jones MH, Miniaci A. Quantifying glenoid bone loss in anterior shoulder instability: reliability and accuracy of 2-dimensional and 3-dimensional computed tomography measurement techniques. Am J Sports Med. 2012;40(11):2569–77. https://doi.org/10.1177/0363546512458247.

Article  PubMed  Google Scholar 

Min KS, Sy JW, Mannino BJ. Area measurement percentile of 3-dimensional computed tomography has the highest interobserver reliability when measuring anterior glenoid bone loss. Arthroscopy. 2023;39(6):1394–402. https://doi.org/10.1016/j.arthro.2022.12.035.

Article  PubMed  Google Scholar 

Sgroi M, Huzurudin H, Ludwig M, Zippelius T, Reichel H, Kappe T. MRI allows accurate measurement of glenoid bone loss. Clin Orthop Relat Res. 2022;480(9):1731–42. https://doi.org/10.1097/CORR.0000000000002215.

Article  PubMed  PubMed Central  Google Scholar 

Weber AE, Bolia IK, Horn A, Villacis D, Omid R, Tibone JE, et al. Glenoid bone loss in shoulder instability: superiority of three-dimensional computed tomography over two-dimensional magnetic resonance imaging using established methodology. Clin Orthop Surg. 2021;13(2):223–8. https://doi.org/10.4055/cios20097.

Article  PubMed  PubMed Central  Google Scholar 

Breighner RE, Endo Y, Konin GP, Gulotta LV, Kof MF, Potter HG. Technical developments: zero echo time imaging of the shoulder: enhanced osseous detail by using MR imaging. Radiology. 2018;286(3):960–6. https://doi.org/10.1148/radiol.2017170906.

Article  PubMed  Google Scholar 

de Mello RAF, Ma YJ, Ashir A, Jerban S, Hoenecke H, Carl M, et al. Three-dimensional zero echo time magnetic resonance imaging versus 3-dimensional computed tomography for glenoid bone assessment. Arthroscopy. 2020;36(9):2391–400. https://doi.org/10.1016/j.arthro.2020.05.042.

Article  PubMed  PubMed Central  Google Scholar 

Aydingoz U, Yidiz AE, Ergen FB. Zero echo time musculoskeletal MRI: technique, optimization, applications, and pitfalls. Radiographics. 2022;42(5):1398–414. https://doi.org/10.1148/rg.220029.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif