Adorno G, Lopez E, Burg MA, Loerzel V, Killian M, Dailey AB et al (2018) Positive aspects of having had cancer: a mixed-methods analysis of responses from the American Cancer Society Study of Cancer Survivors-II (SCS-II). Psychooncology 27(5):1412–1425
Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G (2021) Epidemiology and risk factors
Ferlay JS, Foucher EL (2013) Cancerinci denceandmortalitypatternsinEurope: estimatesfor40countriesin 2012. EurJCancer 49(6):1374
Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y et al (2017) Risk factors and preventions of breast cancer. Int J Biol Sci 13(11):1387
Article CAS PubMed PubMed Central Google Scholar
Xia L, Su X, Shen J, Meng Q, Yan J, Zhang C et al (2018) ANLN functions as a key candidate gene in cervical cancer as determined by integrated bioinformatic analysis. Cancer Manag Res 10:663
Article CAS PubMed PubMed Central Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558
Article CAS PubMed PubMed Central Google Scholar
Zhang G-M, Goyal H, Song L-L (2018) Bioinformatics analysis of differentially expressed miRNA-related mRNAs and their prognostic value in breast carcinoma Corrigendum in/10.3892/or. 2018.6505. Oncol Rep 39(6):2865–2872
Silva TC, Colaprico A, Olsen C, D'Angelo F, Bontempi G, Ceccarelli M, et al (2016) TCGA Workflow: analyze cancer genomics and epigenomics data using Bioconductor packages. F1000Research, 5
Zhang L, Sun S, Wang Y, Mo Y, Xiong F, Zhang S et al (2020) Gossypol induces apoptosis of multiple myeloma cells through the JUN-JNK pathway. Am J Cancer Res 10(3):870
CAS PubMed PubMed Central Google Scholar
Jiao X, Katiyar S, Willmarth NE, Liu M, Ma X, Flomenberg N et al (2010) c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J Biol Chem 285(11):8218–8226
Article CAS PubMed PubMed Central Google Scholar
Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ (2006) c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol 37(6):668–674
Article CAS PubMed Google Scholar
Liu Y, Chen H, Dong P, Xie G, Zhou Y, Ma Y et al (2020) KIF23 activated Wnt/β-catenin signaling pathway through direct interaction with Amer1 in gastric cancer. Aging (Albany NY) 12(9):8372
Article CAS PubMed Google Scholar
Sun X, Jin Z, Song X, Wang J, Li Y, Qian X et al (2015) Evaluation of KIF23 variant 1 expression and relevance as a novel prognostic factor in patients with hepatocellular carcinoma. BMC Cancer 15(1):1–9
Article PubMed PubMed Central Google Scholar
Li Z, Yang H-Y, Zhang X-L, Zhang X, Huang Y-Z, Dai X-Y et al (2022) Kinesin family member 23, regulated by FOXM1, promotes triple negative breast cancer progression via activating Wnt/β-catenin pathway. J Exp Clin Cancer Res 41(1):1–15
Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N et al (2013) miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA 19(12):1767–1780
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Yao W, Zhang M, Lu Y, Tang J, Jiang M et al (2021) TTK inhibitor promotes radiosensitivity of liver cancer cells through p21. Biochem Biophys Res Commun 550:84–91
Article CAS PubMed Google Scholar
Tang J, Lu M, Cui Q, Zhang D, Kong D, Liao X et al (2019) Overexpression of ASPM, CDC20, and TTK confer a poorer prognosis in breast cancer identified by gene co-expression network analysis. Front Oncol 9:310
Article PubMed PubMed Central Google Scholar
Zhou Q, Ren J, Hou J, Wang G, Ju L, Xiao Y et al (2019) Co-expression network analysis identified candidate biomarkers in association with progression and prognosis of breast cancer. J Cancer Res Clin Oncol 145(9):2383–2396
Article CAS PubMed Google Scholar
Xie Y, Wang A, Lin J, Wu L, Zhang H, Yang X et al (2017) Mps1/TTK: a novel target and biomarker for cancer. J Drug Target 25(2):112–118
Article CAS PubMed Google Scholar
Gharehdaghchi Z, Baradaran B, Salehzadeh A, Kazemi T (2020) miR-486-5p regulates cell proliferation and migration in breast cancer. Meta Gene 23:100643
Zhu Q, Sun Y, Zhou Q, He Q, Qian H (2018) Identification of key genes and pathways by bioinformatics analysis with TCGA RNA sequencing data in hepatocellular carcinoma. Mol Clin Oncol 9(6):597–606
CAS PubMed PubMed Central Google Scholar
Huang C, Luo H, Huang Y, Fang C, Zhao L, Li P et al (2021) AURKB, CHEK1 and NEK2 as the potential target proteins of scutellaria barbata on hepatocellular carcinoma: an integrated bioinformatics analysis. Int J Gen Med 14:3295
Article PubMed PubMed Central Google Scholar
Naorem LD, Muthaiyan M, Venkatesan A (2019) Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer. J Cell Biochem 120(4):6154–6167
Article CAS PubMed Google Scholar
Ziegler Y, Guillen VS, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS (2021) Transcription regulation and genome rewiring governing sensitivity and resistance to FOXM1 inhibition in breast cancer. Cancers 13(24):6282
Article CAS PubMed PubMed Central Google Scholar
Li S, Liu N, Piao J, Meng F, Li Y (2020) CCNB1 expedites the progression of cervical squamous cell carcinoma via the regulation by FOXM1. Onco Targets Ther 13:12383
Article CAS PubMed PubMed Central Google Scholar
Liang WH, Li N, Yuan ZQ, Qian XL, Wang ZH (2019) DSCAM-AS1 promotes tumor growth of breast cancer by reducing miR-204-5p and up-regulating RRM2. Mol Carcinog 58(4):461–473
Article CAS PubMed Google Scholar
Gao Y, Zhao H, Ren M, Chen Q, Li J, Li Z et al (2020) TOP2A promotes tumorigenesis of high-grade serous ovarian cancer by regulating the TGF-β/Smad pathway. J Cancer 11(14):4181
Article CAS PubMed PubMed Central Google Scholar
Qi L, Zhou B, Chen J, Hu W, Bai R, Ye C et al (2019) Significant prognostic values of differentially expressed-aberrantly methylated hub genes in breast cancer. J Cancer 10(26):6618
Article CAS PubMed PubMed Central Google Scholar
Fountzilas G, Valavanis C, Kotoula V, Eleftheraki AG, Kalogeras KT, Tzaida O et al (2012) HER2 and TOP2A in high-risk early breast cancer patients treated with adjuvant epirubicin-based dose-dense sequential chemotherapy. J Transl Med 10(1):1–21
Liu F, Wu Y, Mi Y, Gu L, Sang M, Geng C (2019) Identification of core genes and potential molecular mechanisms in breast cancer using bioinformatics analysis. Pathol Res Pract 215(7):152436
Article CAS PubMed Google Scholar
Lu Y, Yang G, Xiao Y, Zhang T, Su F, Chang R et al (2020) Upregulated cyclins may be novel genes for triple-negative breast cancer based on bioinformatic analysis. Breast Cancer 27(5):903–911
Wei L-M, Li X-Y, Wang Z-M, Wang Y-K, Yao G, Fan J-H et al (2021) Identification of hub genes in triple-negative breast cancer by integrated bioinformatics analysis. Gland Surg 10(2):799
Article PubMed PubMed Central Google Scholar
Deng J-L, Xu Y-h, Wang G (2019) Identification of potential crucial genes and key pathways in breast cancer using bioinformatic analysis. Front Genet 10:695
Article CAS PubMed PubMed Central Google Scholar
Wei S, Zheng Y, Jiang Y, Li X, Geng J, Shen Y et al (2019) The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine 44:182–193
Article PubMed PubMed Central Google Scholar
Gong M-C, Chen W-Q, Jin Z-Q, Lyu J, Meng L-H (2021) Prognostic value and significant pathway exploration associated with TOP2A involved in papillary thyroid cancer. Int J Gen Med 14:3485
Article PubMed PubMed Central Google Scholar
Wy Q, Sc F, Yq S, Gq J (2020) MiR-96-5p promotes breast cancer migration by activating MEK/ERK signaling. J Gene Med 22(8):e3188
Shubbar E, Kovács A, Hajizadeh S, Parris TZ, Nemes S, Gunnarsdóttir K et al (2013) Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome. BMC Cancer 13(1):1–10
Article CAS PubMed PubMed Central Google Scholar
Shi H, Zhang L, Qu Y, Hou L, Wang L, Zheng M (2017) Prognostic genes of breast cancer revealed by gene co-expression network analysis. Oncol Lett 14(4):4535–4542
Comments (0)