Mesenchymal Stem Cell-Derived Exosomes and Their MicroRNAs in Heart Repair and Regeneration

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol [Internet]. 2020 Dec 12 [cited 2023 Sep 23];76(25):2982. Available from: /pmc/articles/PMC7755038/

Flora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 2019;25(38):4063–84.

Article  CAS  PubMed  Google Scholar 

Sim HW, Zheng H, Richards AM, Chen RW, Sahlen A, Yeo KK, et al. Beta-blockers and renin-angiotensin system inhibitors in acute myocardial infarction managed with inhospital coronary revascularization. Sci Rep. 10, Article 15184 (2020) [Internet]. 2020 Sep 16 [cited 2023 Sep 23];10(1). Available from: https://doi.org/10.1038/s41598-020-72232-y

Ayuna A, Abidin N. The role of neurohormonal blockers in the primary prevention of acute-, early-, and late-onset anthracycline-induced cardiotoxicity. Egypt Heart J [Internet]. 2020 Dec 1 [cited 2023 Sep 23];72(1):1–7. Available from: https://tehj.springeropen.com/articles/10.1186/s43044-020-00090-0. Accessed 11 Sept 2020.

Gaudino M, Bakaeen FG, Benedetto U, Di Franco A, Fremes S, Glineur D, et al. Arterial grafts for coronary bypass: a critical review after the publication of ART and RADIAL. Circulation [Internet]. 2019 Oct 8 [cited 2023 Sep 23];140(15):1273–84. Available from: https://pubmed.ncbi.nlm.nih.gov/31934782/. Accessed 8 Oct 2019.

Khan MohdS, Khan MohdS. Coronary artery bypass grafting: surgical anastomosis: tips and tricks. Curr Perspect Coron Artery Bypass Grafting [Internet]. 2019 Nov 13 [cited 2023 Sep 23]; Available from: https://www.intechopen.com/chapters/70032. Accessed 13 Nov 2019.

Peng X, Zhou J, Wu XS. New strategies for myocardial infarction treatment. J Cardiol Ther (Hong Kong) [Internet]. 2017 Jun 3 [cited 2023 Sep 23];4(3):664–70. Available from: http://www.ghrnet.org/index.php/jct/article/view/1895/2387. Accessed 3 June 2017.

Gao G, Fan C, Li W, Liang R, Wei C, Chen X, et al. Mesenchymal stem cells: ideal seeds for treating diseases. Hum Cell [Internet]. 2021 Nov 1 [cited 2023 Sep 23];34(6):1585. Available from: /pmc/articles/PMC8284686/

Liu Z, Naveed M, Baig MMFA, Mikrani R, Li C, Saeed M, et al. Therapeutic approach for global myocardial injury using bone marrow-derived mesenchymal stem cells by cardiac support device in rats. Biomed Microdevices [Internet]. 2021 Mar 1 [cited 2023 Sep 23];23(1):1–10. Available from: https://link.springer.com/article/10.1007/s10544-020-00538-9. Accessed 8 Jan 2021.

Gupta S, Sharma A, Archana S, Verma RS. Mesenchymal stem cells for cardiac regeneration: from differentiation to cell delivery. Stem Cell Rev Rep [Internet]. 2021 Oct 1 [cited 2023 Sep 23];17(5):1666–94. Available from: https://link.springer.com/article/10.1007/s12015-021-10168-0. Accessed 17 Oct 2021.

Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells — current trends and future prospective. Biosci Rep [Internet]. 2015 [cited 2023 Sep 23];35(2):191. Available from: /pmc/articles/PMC4413017/

Razzaq SS, Khan I, Naeem N, Salim A, Begum S, Haneef K. Overexpression of GATA binding protein 4 and myocyte enhancer factor 2C induces differentiation of mesenchymal stem cells into cardiac-like cells. World J Stem Cells [Internet]. 2022 Sep 9 [cited 2023 Sep 23];14(9):700. Available from: /pmc/articles/PMC9516467/

Haneef K, Habib R, Naeem N, Salim A. Stem cell factor gene overexpression enhances the fusion potential of rat bone marrow mesenchymal stem cells with cardiomyocytes. Pak J Zool. 2021;53(6):2305.

Article  CAS  Google Scholar 

Haneef K, Ali A, Khan I, Naeem N, Jamall S, Salim A. Role of interleukin-7 in fusion of rat bone marrow mesenchymal stem cells with cardiomyocytes in vitro and improvement of cardiac function in vivo. Cardiovasc Ther [Internet]. 2018 Dec 1 [cited 2023 Sep 23];36(6):e12479. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1755-5922.12479. Accessed 19 Nov 2018.

Matta A, Nader V, Lebrin M, Gross F, Prats AC, Cussac D, et al. Pre-conditioning methods and novel approaches with mesenchymal stem cells therapy in cardiovascular disease. Cells [Internet]. 2022 May 1 [cited 2023 Sep 23];11(10). Available from: /pmc/articles/PMC9140025/

Tan SJO, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel applications of mesenchymal stem cell-derived exosomes for myocardial infarction therapeutics. Biomolecules [Internet]. 2020 May 1 [cited 2023 Sep 23];10(5). Available from: https://pubmed.ncbi.nlm.nih.gov/32370160/. Accessed 2 May 2020.

Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther [Internet]. 2022 Dec 1 [cited 2023 Sep 23];7(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35314676/. Accessed 21 Mar 2022.

Khubutiya MS, Vagabov AV, Temnov AA, Sklifas AN. Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy. 2014;16(5):579–85.

Article  CAS  PubMed  Google Scholar 

Razeghian-Jahromi I, Matta AG, Canitrot R, Zibaeenezhad MJ, Razmkhah M, Safari A, et al. Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy. Stem Cell Res Ther [Internet]. 2021 Dec 1 [cited 2023 Sep 23];12(1):1–12. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-021-02443-1. Accessed 23 June 2021.

Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. J Transl Med. 2020 18:1 [Internet]. 2020 Nov 27 [cited 2023 Sep 23];18(1):1–21. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02622-3. Accessed 27 Nov 2020.

Kossl J, Bohacova P, Hermankova B, Javorkova E, Zajicova A, Holan V. Antiapoptotic properties of mesenchymal stem cells in a mouse model of corneal inflammation. Stem Cells Dev. 2021;30(8):418–27.

Article  CAS  PubMed  Google Scholar 

Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells [Internet]. 2017 Apr 1 [cited 2023 Sep 23];35(4):851–8. Available from: https://doi.org/10.1002/stem.2575

Kore RA, Wang X, Ding Z, Griffin RJ, Tackett AJ, Mehta JL. MSC exosome-mediated cardioprotection in ischemic mouse heart comparative proteomics of infarct and peri-infarct areas. Mol Cell Biochem [Internet]. 2021 Apr 1 [cited 2023 Sep 23];476(4):1691. Available from: /pmc/articles/PMC8186026/

Defo M, Joel M, Yuan J, Wang J, Yan Y, Qian H, et al. MSC: immunoregulatory effects, roles on neutrophils and evolving clinical potentials. Am J Transl Res [Internet]. 2019 [cited 2023 Sep 23];11(6):3890–904. Available from: www.ajtr.org/ISSN:1943-8141/AJTR0096368. Accessed 15 June 2019.

Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Research & Therapy 2020 11:1 [Internet]. 2020 Aug 8 [cited 2023 Sep 23];11(1):1–16. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-020-01855-9. Accessed 8 Aug 2020.

Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells [Internet]. 2019 Jul 1 [cited 2023 Sep 23];37(7):855–64. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/stem.3016. Accessed 30 Apr 2019.

Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int [Internet]. 2016 [cited 2023 Sep 23];2016. Available from: /pmc/articles/PMC4707334/

Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem [Internet]. 2003 Aug 15 [cited 2023 Sep 23];89(6):1235–49. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jcb.10594. Accessed 15 Aug 2003.

Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol [Internet]. 2006 [cited 2023 Sep 23];44(4):215–30. Available from: https://journals.viamedica.pl/folia_histochemica_cytobiologica/article/view/4554. Accessed 16 Jan 2007.

Boiret N, Rapatel C, Veyrat-Masson R, Guillouard L, Guérin JJ, Pigeon P, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol [Internet]. 2005 Feb [cited 2023 Sep 23];33(2):219–25. Available from: https://pubmed.ncbi.nlm.nih.gov/15676216/. Accessed Feb 2005.

Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al. Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med [Internet]. 2019 Sep 1 [cited 2023 Sep 23];13(9):1738–55. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/term.2914.

Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: biological characteristics and application in disease therapy. Biochimie. 2021;1(185):9–21.

Article  Google Scholar 

Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, characteristics, and therapeutic applications of mesenchymal cells in tissue engineering. Tissue Eng Regen Med [Internet]. 2022 Apr 1 [cited 2023 Sep 23];19(2):325. Available from: /pmc/articles/PMC8971271/

Kobayashi K, Suzuki K. Mesenchymal stem/stromal cell-based therapy for heart failure — what is the best source? Circ J [Internet]. 2018 [cited 2023 Sep 23];82(9):2222–32. Available from: https://pubmed.ncbi.nlm.nih.gov/30089767/. Accessed 24 Aug 2018.

Goradel NH, Hour FG, Negahdari B, Malekshahi ZV, Hashemzehi M, Masoudifar A, et al. Stem cell therapy: a new therapeutic option for cardiovascular diseases. J Cell Biochem [Internet]. 2018 Jan 1 [cited 2023 Sep 23];119(1):95–104. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jcb.26169.

Oryan A, Kamali A, Moshirib A, Eslaminejad MB. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs [Internet]. 2017 Aug 1 [cited 2023 Sep 23];204(2):59–83. Available from: https://pubmed.ncbi.nlm.nih.gov/28647733/.

Soltani Amir Hossein Mahdavi L, Soltani L. Role of signaling pathways during cardiomyocyte differentiation of mesenchymal stem cells. Rev Article Cardiol [Internet]. 2022 [cited 2023 Sep 23];147:216–24. Available from: www.karger.com/crd.

Shen H, Wang Y, Zhang Z, Yang J, Hu S, Shen Z. Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells Int [Internet]. 2015 [cited 2023 Sep 23];2015. Available from: /pmc/articles/PMC4539177/

Naeem N, Haneef K, Kabir N, Iqbal H, Jamall S, Salim A. DNA methylation inhibitors, 5-azacytidine and zebularine potentiate the transdifferentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Cardiovasc Ther [Internet]. 2013 Aug [cited 2023 Sep 23];31(4):201–9. Available from: https://pubmed.ncbi.nlm.nih.gov/22954287/.

Haneef K, Naeem N, Khan I, Iqbal HAA, Kabir N, Jamall S, et al. Conditioned medium enhances the fusion capability of rat bone marrow mesenchymal stem cells and cardiomyocytes. Mol Biol Rep [Internet]. 2014 Jan 28 [cited 2023 Sep 23];41(5):3099–112. Available from: https://link.springer.com/article/10.1007/s11033-014-3170-1. Accessed 28 Jan 2014.

Poomani MS, Mariappan I, Perumal R, Regurajan R, Muthan K, Subramanian V. Mesenchymal stem cell (MSCs) therapy for ischemic heart disease: a promising frontier. Glob Heart [Internet]. 2022 [cited 2023 Sep 23];17(1). Available from: /pmc/articles/PMC8916054/

Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol [Internet]. 2013 Feb 2 [cited 2023 Sep 24];200(4):373. Available from: /pmc/articles/PMC3575529/

Battistelli M, Falcieri E. Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology (Basel) [Internet]. 2020 Jan 1 [cited 2023 Sep 24];9(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31968627/. Accessed 20 Jan 2020.

Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol [Internet]. 2015 [cited 2023 Sep 24]; Available from: https://doi.org/10.1016/j.tcb.2015.01.004

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 2007 9:6 [Internet]. 2007 May 7 [cited 2023 Sep 24];9(6):654–9. Available from: https://www.nature.com/articles/ncb1596. Accessed 7 May 2007.

Wei H, Chen Q, Lin L, Sha C, Li T, Liu Y, et al. Regulation of exosome production and cargo sorting. Int J Biol Sci [Internet]. 2021 [cited 2023 Sep 24];17(1):163. Available from: /pmc/articles/PMC7757038/

Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles [Internet]. 2015 [cited 2023 Sep 24];4(2015):1–60. Available from: https://pubmed.ncbi.nlm.nih.gov/25979354/. Accessed 14 May 2015.

Kalluri R. The biology and function of exosomes in cancer. J Clin Invest [Internet]. 2016 Apr 1 [cited 2023 Sep 24];126(4):1208–15. Available from: https://pubmed.ncbi.nlm.nih.gov/27035812/. Accessed 1 Apr 2016.

Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol [Internet]. 2019 Jan 1 [cited 2023 Sep 24];21(1):9–17. Available from: https://pubmed.ncbi.nlm.nih.gov/30602770/. Accessed 2 Jan 2019.

Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;1(188):1–11.

Article  Google Scholar 

Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication and Signaling [Internet]. 2021 Dec 1 [cited 2023 Sep 24];19(1). Available from: https://www.researchgate.net/publication/351086259_The_exosome_journey_from_biogenesis_to_uptake_and_intracellular_signalling.

Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16(4):415–21.

Article  PubMed  Google Scholar 

Khalyfa A, Poroyko VA, Qiao Z, Gileles-Hillel A, Khalyfa AA, Akbarpour M, et al. Exosomes and metabolic function in mice exposed to alternating dark-light cycles mimicking night shift work schedules. Front Physiol [Internet]. 2017 Nov 2 [cited 2023 Sep 24];8(NOV). Available from: https://pubmed.ncbi.nlm.nih.gov/29163218/. Accessed 2 Nov 2017.

Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell & Bioscience 2019 9:1 [Internet]. 2019 Feb 15 [cited 2023 Sep 24];9(1):1–18. Available from: https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-019-0282-2. Accessed 15 Feb 2019.

Cho KS, Kang SA, Kim SD, Mun SJ, Yu HS, Roh HJ. Dendritic cells and M2 macrophage play an important role in suppression of Th2-mediated inflammation by adipose stem cells-derived extracellular vesicles. Stem Cell Res [Internet]. 2019 Aug 1 [cited 2023 Sep 24];39. Available from: https://pubmed.ncbi.nlm.nih.gov/31344653/. Accessed 12 Jul 2019.

Gyöngyösi M, Blanco J, Marian T, Trón L, Petneházy O, Petrasi Z, et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging [Internet]. 2008 [cited 2023 Sep 24];1(2):94. Available from: /pmc/articles/PMC3053595/

McGinley LM, McMahon J, Stocca A, Duffy A, Flynn A, O’Toole D, et al. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther [Internet]. 2013 Oct 1 [cited 2023 Sep 24];24(10):840. Available from: /pmc/articles/PMC3787467/

Kim EH, Kim DH, Kim HR, Kim SY, Kim HH, Bang OY. Stroke serum priming modulates characteristics of mesenchymal stromal cells by controlling the expression miRNA-20a. Cell Transplant [Internet]. 2016 Aug 1 [cited 2023 Sep 24];25(8):1489–99. Available from: https://journals.sagepub.com/doi/10.3727/096368916X690430?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed. Accessed 1 Aug 2016.

Collantes M, Pelacho B, García-Velloso MJ, Gavira JJ, Abizanda G, Palacios I, et al. Non-invasive in vivo imaging of cardiac stem/progenitor cell biodistribution and retention after intracoronary and intramyocardial delivery in a swine model of chronic ischemia reperfusion injury. J Transl Med [Internet]. 2017 Mar 13 [cited 2023 Sep 24];15(1):1–11. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-017-1157-0. Accessed 13 Mar 2017.

Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circ Res [Internet]. 2017 Mar 31 [cited 2023 Sep 24];120(7):1139–50. Available from: https://www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.116.309819.

Sun SJ, Wei R, Li F, Liao SY, Tse HF. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Rep [Internet]. 2021 Jul 7 [cited 2023 Sep 24];16(7):1662. Available from: /pmc/articles/PMC8282428/

Ma T, Chen Y, Chen Y, Meng Q, Sun J, Shao L, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int [Internet]. 2018 [cited 2023 Sep 24];2018. Available from: https://pubmed.ncbi.nlm.nih.gov/30271437/. Accessed 9 Sept 2018.

Moghaddam AS, Afshari JT, Esmaeili SA, Saburi E, Joneidi Z, Momtazi-Borojeni AA. Cardioprotective microRNAs: lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis [Internet]. 2019 Jun 1 [cited 2023 Sep 24];285:1–9. Available from: http://www.atherosclerosis-journal.com/article/S0021915019301522/fulltext.

Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor ENE, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res [Internet]. 2013 May [cited 2023 Sep 24];10(3):301–12. Available from: https://pubmed.ncbi.nlm.nih.gov/23399448/.

Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int [Internet]. 2015 [cited 2023 Sep 24];2015. Available from: https://pubmed.ncbi.nlm.nih.gov/26106430/. Accessed 27 May 2015.

Zhang Z, Yang J, Yan W, Li Y, Shen Z, Asahara T. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. J Am Heart Assoc [Internet]. 2016 Jan 1 [cited 2023 Sep 25];5(1). Available from: https://pubmed.ncbi.nlm.nih.gov/26811168/. Accessed 25 Jan 2016.

Cervio E, Barile L, Moccetti T, Vassalli G. Exosomes for intramyocardial intercellular communication. Stem Cells Int [Internet]. 2015 [cited 2023 Sep 24];2015. Available from: /pmc/articles/PMC4454760/

Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl) [Internet]. 2014 Apr 1 [cited 2023 Sep 24];92(4):387–97. Available from: https://pubmed.ncbi.nlm.nih.gov/24337504/.

Tirziu D, Simons M. Angiogenesis in the human heart: Gene and cell therapy. Angiogenesis [Internet]. 2005 Dec 25 [cited 2023 Sep 24];8(3):241–51. Available from: https://link.springer.com/article/10.1007/s10456-005-9011-z.

Qu Q, Pang Y, Zhang C, Liu L, Bi Y. Exosomes derived from human umbilical cord mesenchymal stem cells inhibit vein graft intimal hyperplasia and accelerate reendothelialization by enhancing endothelial function. Stem Cell Res Ther [Internet]. 2020 Mar 23 [cited 2023 Sep 24];11(1):1–14. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-020-01639-1. Accessed 23 Mar 2020.

Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA‐21. Stem Cells Transl Med [Internet]. 2017 Jan 1 [cited 2023 Sep 24];6(1):209. Available from: /pmc/articles/PMC5442741/

Xue C, Shen Y, Li X, Li B, Zhao S, Gu J, et al. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway. https://home.liebertpub.com/scd [Internet]. 2018 Apr 1 [cited 2023 Sep 24];27(7):456–65. Available from: https://www.liebertpub.com/doi/10.1089/scd.2017.0296. Accessed 1 Apr 2018.

Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem [Internet]. 2018 Sep 1 [cited 2023 Sep 24];49(1):160–71. Available from: https://pubmed.ncbi.nlm.nih.gov/30134228/. Accessed 22 Aug 2018.

Xu H, Wang Z, Liu L, Zhang B, Li B. Exosomes derived from adipose tissue, bone marrow, and umbilical cord blood for cardioprotection after myocardial infarction. J Cell Biochem [Internet]. 2020 Mar 1 [cited 2023 Sep 24];121(3):2089–102. Available from: https://pubmed.ncbi.nlm.nih.gov/31736169/.

Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem [Internet]. 2015 Dec 1 [cited 2023 Sep 24];37(6):2415–24. Available from: https://doi.org/10.1159/000438594

Almeria C, Weiss R, Roy M, Tripisciano C, Kasper C, Weber V, et al. Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol [Internet]. 2019 Oct 23 [cited 2023 Sep 24];7:292. Available from: /pmc/articles/PMC6819375/

Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Research & Therapy 2019 10:1 [Internet]. 2019 Jun 3 [cited 2023 Sep 24];10(1):1–18. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-019-1276-z. Accessed 3 June 2019.

Collino F, Pomatto M, Bruno S, Lindoso RS, Tapparo M, Sicheng W, et al. Exosome and microvesicle-enriched fractions isolated from mesenchymal stem cells by gradient separation showed different molecular signatures and functions on renal tubular epithelial cells. Stem Cell Rev [Internet]. 2017 Apr 1 [cited 2023 Sep 24];13(2):226. Available from: /pmc/articles/PMC5380712/

Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells [Internet]. 2016 Mar 1 [cited 2023 Sep 24];34(3):601. Available from: /pmc/articles/PMC5785927/

Vrijsen KR, Maring JA, Chamuleau SAJ, Verhage V, Mol EA, Deddens JC, et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater [Internet]. 2016 Oct 1 [cited 2023 Sep 24];5(19):2555–65. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.201600308. Accessed 31 Oct 2016.

Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci [Internet]. 2016 Jun 1 [cited 2023 Sep 24];129(11):2182–9. Available from: https://doi.org/10.1242/jcs.170373

Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res [Internet]. 2012 Feb 3 [cited 2023 Sep 24];11(2):839–49. Available from: https://pubs.acs.org/doi/abs/10.1021/pr200682z.

Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep [Internet]. 2018 Dec 1 [cited 2023 Sep 24];8(1). Available from: /pmc/articles/PMC5780426/

Sugamura K, Keaney JF. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med [Internet]. 2011 Sep 9 [cited 2023 Sep 24];51(5):978. Available from: /pmc/articles/PMC3156326/

Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci U S A [Internet]. 2011 Dec 6 [cited 2023 Sep 24];108(49):19725–30. Available from: /pmc/articles/PMC3241791/

Fang L, Moore XL, Dart AM, Wang LM. Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol [Internet]. 2015 [cited 2023 Sep 24];12(3):305. Available from: /pmc/articles/PMC4460175/

Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther [Internet]. 2018 Jun 1 [cited 2023 Sep 24];186:73. Available from: /pmc/articles/PMC5981007/

Shao L, Shen Y, Ren C, Kobayashi S, Asahara T, Yang J. Inflammation in myocardial infarction: roles of mesenchymal stem cells and their secretome. Cell Death Discov. 2022;8(1):452.

Article  PubMed  PubMed Central  Google Scholar 

French BA, Kramer CM. Mechanisms of postinfarct left ventricular remodeling. Drug Discov Today Dis Mech. 2007;4(3):185–96.

Article  PubMed  PubMed Central  Google Scholar 

Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation [Internet]. 2013 Jul 7 [cited 2023 Sep 24];128(4):388. Available from: /pmc/articles/PMC3801217/

Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev [Internet]. 2014 Jun 1 [ci

留言 (0)

沒有登入
gif