Inhibition of thioredoxin-1 enhances the toxicity of glycolysis inhibitor 2-deoxyglucose by downregulating SLC1A5 expression in colorectal cancer cells

I. Soerjomataram, J. Lortet-Tieulent, D.M. Parkin, J. Ferlay, C. Mathers, D. Forman, F. Bray, Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 380, 1840–1850 (2012). https://doi.org/10.1016/s0140-6736(12)60919-2

Article  PubMed  Google Scholar 

L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019). https://doi.org/10.3322/caac.21551

Article  PubMed  Google Scholar 

D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013

Article  CAS  PubMed  Google Scholar 

S. Ganapathy-Kanniappan, J.F.H. Geschwind, Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer 12, 152 (2013). https://doi.org/10.1186/1476-4598-12-152

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Dey, N. Murmu, T. Mondal, I. Saha, S. Chatterjee, R. Manna, S. Haldar, S.K. Dash, T.R. Sarkar, B. Giri, Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed. Pharmacother. 156, 113801 (2022). https://doi.org/10.1016/j.biopha.2022.113801

Article  CAS  PubMed  Google Scholar 

Y. Guan, W. Yao, H. Yu, Y. Feng, Y. Zhao, X. Zhan, Y. Wang, Chronic stress promotes colorectal cancer progression by enhancing glycolysis through beta2-AR/CREB1 signal pathway. Int. J. Biol. Sci. 19, 2006–2019 (2023). https://doi.org/10.7150/ijbs.79583

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. MaruYama, H. Miyazaki, Y.J. Lim, J. Gu, M. Ishikawa, T. Yoshida, W. Chen, Y. Owada, H. Shibata, Pyrolyzed deketene curcumin controls regulatory T cell generation and gastric cancer metabolism cooperate with 2-deoxy-d-glucose. Front. Immunol. 14, 1049713 (2023). https://doi.org/10.3389/fimmu.2023.1049713

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Sivasubramanian, C.H. Chu, Y. Hsia, N.T. Chen, M.T. Cai, L.S. Tew, Y.C. Chuang, C.T. Chen, B. Aydogan, L.D. Liao, L.W. Lo, Illuminating and radiosensitizing tumors with 2DG-bound gold-based nanomedicine for targeted CT imaging and therapy. Nanomaterials (Basel) 13, 1790 (2023). https://doi.org/10.3390/nano13111790

Article  CAS  PubMed  Google Scholar 

F. Lu, D. Fang, S. Li, Z. Zhong, X. Jiang, Q. Qi, Y. Liu, W. Zhang, X. Xu, Y. Liu, W. Zhu, L. Jiang, Thioredoxin 1 supports colorectal cancer cell survival and promotes migration and invasion under glucose deprivation through interaction with G6PD. Int. J. Biol. Sci. 18, 5539–5553 (2022). https://doi.org/10.7150/ijbs.71809

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Yang, J. Zhao, X. Cui, Q. Zhan, K. Yi, Q. Wang, M. Xiao, Y. Tan, B. Hong, C. Fang, C. Kang, TCA-phospholipid-glycolysis targeted triple therapy effectively suppresses ATP production and tumor growth in glioblastoma. Theranostics 12, 7032–7050 (2022). https://doi.org/10.7150/thno.74197

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Lampaki, G. Lazaridis, K. Zarogoulidis, I. Kioumis, A. Papaiwannou, K. Tsirgogianni, A. Karavergou, T. Tsiouda, V. Karavasilis, L. Yarmus, K. Darwiche, L. Freitag, A. Sakkas, A. Kantzeli, S. Baka, W. Hohenforst-Schmidt, P. Zarogoulidis, Defining the role of tyrosine kinase inhibitors in early stage non-small cell lung cancer. J. Cancer 6, 568–574 (2015). https://doi.org/10.7150/jca.11893

Article  PubMed  PubMed Central  Google Scholar 

C. Laussel, S. Leon, Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem. Pharmacol. 182, 114213 (2020). https://doi.org/10.1016/j.bcp.2020.114213

Article  CAS  PubMed  Google Scholar 

F. Lin, P. Zhang, Z. Zuo, F. Wang, R. Bi, W. Shang, A. Wu, J. Ye, S. Li, X. Sun, J. Wu, L. Jiang, Thioredoxin-1 promotes colorectal cancer invasion and metastasis through crosstalk with S100P. Cancer Lett. 401, 1–10 (2017). https://doi.org/10.1016/j.canlet.2017.04.036

Article  CAS  PubMed  Google Scholar 

W. Shang, Z. Xie, F. Lu, D. Fang, T. Tang, R. Bi, L. Chen, L. Jiang, Jiang, increased Thioredoxin-1 expression promotes cancer progression and predicts poor prognosis in patients with gastric cancer. Oxid. Med. Cell. Longev. 2019, 9291683 (2019). https://doi.org/10.1155/2019/9291683

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.J. Welsh, W.T. Bellamy, M.M. Briehl, G. Powis, The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. 62, 5089–5095 (2002)

CAS  PubMed  Google Scholar 

J. Muri, H. Thut, Q. Feng, M. Kopf, Thioredoxin-1 distinctly promotes NF-kappaB target DNA binding and NLRP3 inflammasome activation independently of Txnip. Elife 9, e53627 (2020). https://doi.org/10.7554/eLife.53627

Article  PubMed  PubMed Central  Google Scholar 

Z. Zuo, P. Zhang, F. Lin, W. Shang, R. Bi, F. Lu, J. Wu, L. Jiang, Interplay between Trx-1 and S100P promotes colorectal cancer cell epithelial-mesenchymal transition by up-regulating S100A4 through AKT activation. J. Cell. Mol. Med. 22, 2430–2441 (2018). https://doi.org/10.1111/jcmm.13541

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Chen, Y. Pan, H. Liu, F. Ning, Q. Lu, Y. Duan, X. Gan, S. Lu, H. Hou, M. Zhang, Y. Tian, G.E. Lash, Ezrin accelerates breast cancer liver metastasis through promoting furin-like convertase-mediated cleavage of Notch1. Cell. Oncol. (Dordr.) 46, 571–587 (2023). https://doi.org/10.1007/s13402-022-00761-x

Article  CAS  PubMed  Google Scholar 

K.L. Bloomfield, S.A. Osborne, D.D. Kennedy, F.M. Clarke, K.F. Tonissen, Thioredoxin-mediated redox control of the transcription factor Sp1 and regulation of the thioredoxin gene promoter. Gene 319, 107–116 (2003). https://doi.org/10.1016/s0378-1119(03)00799-6

Article  CAS  PubMed  Google Scholar 

S. Paul, S. Ghosh, S. Kumar, Tumor glycolysis, an essential sweet tooth of tumor cells. Semin. Cancer Biol. 86, 1216–1230 (2022). https://doi.org/10.1016/j.semcancer.2022.09.007

Article  CAS  PubMed  Google Scholar 

X. Zhong, X. He, Y. Wang, Z. Hu, H. Huang, S. Zhao, P. Wei, D. Li, Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J. Hematol. Oncol. 15, 160 (2022). https://doi.org/10.1186/s13045-022-01358-5

Article  PubMed  PubMed Central  Google Scholar 

C.R. Kennedy, S.B. Tilkens, H. Guan, J.A. Garner, P.M. Or, A.M. Chan, Differential sensitivities of glioblastoma cell lines towards metabolic and signaling pathway inhibitions. Cancer Lett. 336, 299–306 (2013). https://doi.org/10.1016/j.canlet.2013.03.020

Article  CAS  PubMed  Google Scholar 

Z. Luo, J. Xu, J. Sun, H. Huang, Z. Zhang, W. Ma, Z. Wan, Y. Liu, A. Pardeshi, S. Li, Li, Co-delivery of 2-Deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer. Acta Biomater. 105, 239–252 (2020). https://doi.org/10.1016/j.actbio.2020.01.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Zhang, X. Zhu, H. Wu, K. Jiang, G. Zhao, A. Shaukat, G. Deng, C. Qui, Targeting the ROS/PI3K/AKT/HIF-1alpha/HK2 axis of breast cancer cells: Combined administration of Polydatin and 2-Deoxy-d-glucose. J. Cell. Mol. Med. 23, 3711–3723 (2019). https://doi.org/10.1111/jcmm.14276

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Zhang, Q. Fei, J. Li, C. Zhang, Y. Sun, C. Zhu, F. Wang, Y. Sun, Sun, 2-Deoxyglucose reverses the promoting effect of insulin on colorectal cancer cells in vitro. PLoS One 11, e0151115 (2016). https://doi.org/10.1371/journal.pone.0151115

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Singh, S. Pandey, A.S. Chawla, A.N. Bhatt, B.G. Roy, D. Saluja, B.S. Dwarakanath, Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis. Eur. J. Cancer 123, 11–24 (2019). https://doi.org/10.1016/j.ejca.2019.09.005

Article  CAS  PubMed  Google Scholar 

R. Pusapati, J. Settleman, TORquing metabolic reprogramming in cancer cells. Cell Cycle 15, 2387–2388 (2016). https://doi.org/10.1080/15384101.2016.1204850

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Li, M.A. Fath, P.M. Scarbrough, W.H. Watson, D.R. Spitz, Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer. Redox Biol. 4, 127–135 (2015). https://doi.org/10.1016/j.redox.2014.12.001

Article  CAS  PubMed  Google Scholar 

R. Rashmi, X. Huang, J.M. Floberg, A.E. Elhammali, M.L. McCormick, G.J. Patti, D.R. Spitz, J.K. Schwarz, Radioresistant cervical cancers are sensitive to inhibition of glycolysis and redox metabolism. Cancer Res. 78, 1392–1403 (2018). https://doi.org/10.1158/0008-5472.Can-17-2367

Article  CAS  PubMed  PubMed Central  Google Scholar 

H.C. May, J.J. Yu, M.N. Guentzel, J.P. Chambers, A.P. Cap, B.P. Arulanandam, Repurposing auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. Front. Microbiol. 9, 336 (2018). https://doi.org/10.3389/fmicb.2018.00336

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif