Ankle dorsiflexion assistance of patients with foot drop using a powered ankle-foot orthosis to improve the gait asymmetry

Alnajjar F, Zaier R, Khalid S, Gochoo M. Trends and technologies in rehabilitation of foot drop: a systematic review. Expert Rev Med Devices. 2021;18(1):31–46.

Article  CAS  PubMed  Google Scholar 

Dubin A. (2014). Gait: the role of the ankle and foot in walking. Med Clinics 2014;98(2):205–211.

Bidabadi SS, Murray I, Lee GYF, Morris S, Tan T. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms. Gait Posture. 2019;71:234–40.

Article  Google Scholar 

Mao YR, Zhao JL, Bian MJ, Lo WLA, Leng Y, Bian RH, Huang DF. Spatiotemporal, kinematic and kinetic assessment of the effects of a foot drop stimulator for home-based rehabilitation of patients with chronic stroke: a randomized clinical trial. J NeuroEng Rehabil. 2022;19(1):1–12.

Article  Google Scholar 

Menotti F, Laudani L, Damiani A, Orlando P, Macaluso A. Comparison of walking energy cost between an anterior and a posterior ankle-foot orthosis in people with foot drop. J Rehabil Med., Gasq D, Dumas R, Caussé B, Scandella M, Cintas P, Acket B, Arné-Bes MC. Comparison between a novel helical and a posterior ankle–foot orthosis on gait in people with unilateral foot drop: a randomized crossover trial. J NeuroEng Rehabil. 2023;20(1):1–13.

Gasq D, Dumas R, Caussé B, Scandella M, Cintas P, Acket B, Arné-Bes MC. Comparison between a novel helical and a posterior ankle–foot orthosis on gait in people with unilateral foot drop: a randomized crossover trial. J NeuroEng Rehabil. 2023;20(1):1–13

Ploeger HE, Bus SA, Brehm MA, Nollet F. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness. Gait Posture. 2014;40(3):391–8.

Article  PubMed  Google Scholar 

Waterval NF, Brehm MA, Harlaar J, Nollet F. Individual stiffness optimization of dorsal leaf spring ankle–foot orthoses in people with calf muscle weakness is superior to standard bodyweight-based recommendations. J NeuroEng Rehabil. 2021;18(1):1–9.

Article  Google Scholar 

Waterval NF, Nollet F, Harlaar J, Brehm MA. Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level. J NeuroEng Rehabil. 2019;16(1):1–9.

Article  Google Scholar 

Ploeger HE, Waterval NF, Nollet F, Bus SA, Brehm MA. Stiffness modification of two ankle-foot orthosis types to optimize gait in individuals with non-spastic calf muscle weakness–a proof-of-concept study. J Foot and Ankle Res. 2019;12(1):1–12.

Article  Google Scholar 

Kerkum YL, Harlaar J, Buizer AI, van den Noort JC, Becher JG, Brehm MA. An individual approach for optimizing ankle-foot orthoses to improve mobility in children with spastic cerebral palsy walking with excessive knee flexion. Gait Posture. 2016;46:104–11.

Article  PubMed  Google Scholar 

Blaya JA, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng. 2004;12(1):24–31.

Article  PubMed  Google Scholar 

Shorter KA, Li Y, Morris EA, Kogler GF, Hsiao-Wecksler ET. Experimental evaluation of a portable powered ankle-foot orthosis. In 2011 Annual Int Conf IEEE Eng Med Biol Soci. pp. 624–627.

Awad LN, Bae J, Kudzia P, Long A, Hendron K, Holt KG, Walsh CJ. Reducing circumduction and hip hiking during hemiparetic walking through targeted assistance of the paretic limb using a soft wearable robot. Am J Phys Med Rehabil. 2017;96(10 Suppl 1):157.

Article  Google Scholar 

Moltedo M, Baček T, Verstraten T, Rodriguez-Guerrero C, Vanderborght B, Lefeber D. Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking. J NeuroEng Rehabil. 2018;15(1):1–25.

Article  Google Scholar 

Browning RC, Modica JR, Kram R, Goswami A. The effects of adding mass to the legs on the energetics and biomechanics of walking. Med Sci Sports and Exercise. 2007;39(3):515–25.

Article  Google Scholar 

Royer TD, Martin PE. Manipulations of leg mass and moment of inertia: effects on energy cost of walking. Med Sci Sports and Exercise. 2005;37(4):649–56.

Article  Google Scholar 

Arellano CJ, O’Connor DP, Layne C, Kurz MJ. The independent effect of added mass on the stability of the sagittal plane leg kinematics during steady-state human walking. J Exp Biol. 2009;212(12):1965–70.

Article  PubMed  Google Scholar 

Awad LN, Bae J, O’donnell K, De Rossi SM, Hendron K, Sloot LH, Walsh CJ. A soft robotic exosuit improves walking in patients after stroke. Sci Translat Med. 2017;9(400):eaai9084.

Article  Google Scholar 

Bae J, Siviy C, Rouleau M, Menard N, O’Donnell K, Geliana I, Walsh CJ. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke. In 2018 int conf Robotics and Automat. (ICRA) (pp. 2820–7). IEEE.

Huo W, Mohammed S, Moreno JC, Amirat Y. Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst J. 2014;10(3):1068–81.

Article  Google Scholar 

Al-Fahaam H, Davis S, Nefti-Meziani S. Power assistive and rehabilitation wearable robot based on pneumatic soft actuators. In 2016 21st int conf methods and models in Automat and Robotics (MMAR) (pp. 472–7). IEEE.

Pourhoseingholi E, Saeedi H, Kamali M, Jalali M. The effect of articulated AFO with hydra pneumatic damper in biomechanical characteristic of drop foot: a pilot study. Med J Islamic Rep Iran. 2020;34:115.

Google Scholar 

Ishak NZ, Mohamaddan S, Kamaruddin AMNA, Khamis H, Yamamoto S, Dawal SZM. Development of ankle foot orthosis (AFO) using pneumatic artificial muscle for disabled children. In MATEC Web of Conferences (Vol. 87, p. 02031). EDP Sciences.

Shorter KA, Kogler GF, Loth E, Durfee WK, Hsiao-Wecksler ET. A portable powered ankle-foot orthosis for rehabilitation. J Rehabil Res Dev. 2011;48(4):459–72.

Article  PubMed  Google Scholar 

Kim SJ, Chang H, Park J, Kim J. Design of a portable pneumatic power source with high output pressure for wearable robotic applications. IEEE Rob Automat Lett. 2018;3(4):4351–8.

Article  Google Scholar 

Kim SJ, Na Y, Lee DY, Chang H, Kim J. Pneumatic AFO powered by a miniature custom compressor for drop foot correction. IEEE Trans Neural Syst Rehabil Eng. 2020;28(8):1781–9.

Article  PubMed  Google Scholar 

Moltedo M, Baček T, Verstraten T, et al. Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking. J NeuroEng Rehabil. 2018;15:86. https://doi.org/10.1186/s12984-018-0424-5.

Article  PubMed  PubMed Central  Google Scholar 

Kim SJ, Park J, Shin W, Lee DY, Kim J. (Proof-of-concept of a pneumatic ankle foot orthosis powered by a custom compressor for drop foot correction. In 2020 IEEE int conf Robotics and Automat (ICRA) (pp. 747–53). IEEE.

Shin WS, Chang H, Kim SJ, Kim J. Characterization of spastic ankle flexors based on viscoelastic modeling for accurate diagnosis. Int J Control Automat Syst. 2020;18:102–13.

Article  Google Scholar 

Neubauer BC, Nath J, Durfee WK. Design of a portable hydraulic ankle-foot orthosis. In 2014 36th Annual Int Conf IEEE Eng Med Biol Soci. pp. 1182–1185.

Kawalec JS. Mechanical testing of foot and ankle implants. In Mechanical Testing of Orthopaedic Implants Woodhead Publishing, 2017. pp. 231–253.

Sadeghi H, Allard P, Duhaime M. Functional gait asymmetry in able-bodied subjects. Hum Move Sci. 1997;16(2–3):243–58.

Article  Google Scholar 

Chin R, Hsiao-Wecksler ET, Loth E, Kogler G, Manwaring SD, Tyson SN, Gilmer JN. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. J Neuroeng Rehabil. 2009;6(1):1–11.

Article  Google Scholar 

Ulkir O, Akgun G, Kaplanoglu E. Mechanical design and analysis of a pneumatic ankle foot orthosis. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) pp. 1–4.

Ferris DP, Czerniecki JM, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech. 2005;21(2):189–97.

Article  PubMed  PubMed Central  Google Scholar 

Saeedi H, Pourhoseingholi E, Kamali M. A comparison the spatiotemporal efficiency of two designs of posterior Leaf Spring (PLS) and pneumatic damper ankle-foot orthoses (AFO) in drop foot. Funct Disabil J. 2019;2(1):171–6.

Google Scholar 

Salmeron LJ, Juca GV, Mahadeo SM, Ma J, Yu S, Su H. An untethered electro-pneumatic exosuit for gait assistance of people with foot drop. In Front Biomedical Devices 2020,83549: V001T09A009, Am Soci Mech Eng.

Zhang M, Cao J, Xie SQ, Zhu G, Zeng X, Huang X, Xu Q. A preliminary study on robot-assisted ankle rehabilitation for the treatment of drop foot. J Intelli Robot Syst. 2018;91:207–15.

Article  Google Scholar 

Zhu G, Zeng X, Zhang M, Xie S, Meng W, Huang X, Xu Q. Robot-assisted ankle rehabilitation for the treatment of drop foot: a case study. In 2016 12th IEEE/ASME int conf Mech Embed Syst Appli (MESA) pp. 1–5.

Winter DA. Overall principle of lower limb support during stance phase of gait. J Biomech. 1980;13(11):923–7.

Article  CAS  PubMed  Google Scholar 

Roth EJ, Merbitz C, Mroczek K, Dugan SA, Suh WW. HEMIPLEGIC GAIT: Relationships between walking speed and other temporal parameters: 1. Am J Phys Med Rehab. 1997;76(2):128–33.

Article  CAS  Google Scholar 

Thalman CM et al. “Design of a soft ankle-foot orthosis exosuit for foot drop assistance.“ 2019 Int Conf Robotics and Automat. (ICRA). IEEE.

Comments (0)

No login
gif