Development of super-specific epigenome editing by targeted allele-specific DNA methylation

Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.

Article  PubMed  CAS  Google Scholar 

Luo C, Hajkova P, Ecker JR. Dynamic DNA methylation: in the right place at the right time. Science. 2018;361(6409):1336–40.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen Z, Zhang Y. Role of mammalian DNA methyltransferases in development. Annu Rev Biochem. 2020;89:135–58.

Article  PubMed  CAS  Google Scholar 

Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 2019;20(10):625–41.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kungulovski G, Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 2016;32(2):101–13.

Article  PubMed  CAS  Google Scholar 

Stolzenburg S, Goubert D, Rots MG. Rewriting DNA methylation signatures at will: the curable genome within reach? Adv Exp Med Biol. 2016;945:475–90.

Article  PubMed  CAS  Google Scholar 

Holtzman L, Gersbach CA. Editing the epigenome: reshaping the genomic landscape. Annu Rev Genomics Hum Genet. 2018;19:43–71.

Article  PubMed  CAS  Google Scholar 

Gjaltema RAF, Rots MG. Advances of epigenetic editing. Curr Opin Chem Biol. 2020;57:75–81.

Article  PubMed  CAS  Google Scholar 

Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res. 2020;48(22):12453–82.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, et al. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res. 2007;35(1):100–12.

Article  PubMed  Google Scholar 

Snowden AW, Gregory PD, Case CC, Pabo CO. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol. 2002;12(24):2159–66.

Article  PubMed  CAS  Google Scholar 

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, et al. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res. 2017;45(4):1703–13.

Article  PubMed  CAS  Google Scholar 

Hofacker D, Broche J, Laistner L, Adam S, Bashtrykov P, Jeltsch A. Engineering of effector domains for targeted DNA methylation with reduced off-target effects. Int J Mol Sci. 2020;21(2):502.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gowher H, Jeltsch A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans. 2018;46(5):1191–202.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78(10):690–5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bettencourt C, Lima M. Machado–Joseph disease: from first descriptions to new perspectives. Orphanet J Rare Dis. 2011;6:35.

Article  PubMed  PubMed Central  Google Scholar 

Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol. 2018;8(1):33–48.

Article  PubMed  Google Scholar 

International HapMap C. The international hapmap project. Nature. 2003;426(6968):789–96.

Article  Google Scholar 

Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V, et al. Frequency of TERT promoter mutations in human cancers. Nat Commun. 2013;4:2185.

Article  PubMed  Google Scholar 

Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun. 2014;5:4767.

Article  PubMed  CAS  Google Scholar 

Broche J, Kungulovski G, Bashtrykov P, Rathert P, Jeltsch A. Genome-wide investigation of the dynamic changes of epigenome modifications after global DNA methylation editing. Nucleic Acids Res. 2021;49(1):158–76.

Article  PubMed  CAS  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. 2011;108(25):10098–103.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Boyle EA, Andreasson JOL, Chircus LM, Sternberg SH, Wu MJ, Guegler CK, et al. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. Proc Natl Acad Sci U S A. 2017;114(21):5461–6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tang L, Yang F, He X, Xie H, Liu X, Fu J, et al. Efficient cleavage resolves PAM preferences of CRISPR-Cas in human cells. Cell Regen. 2019;8(2):44–50.

Article  PubMed  PubMed Central  Google Scholar 

Gleditzsch D, Pausch P, Muller-Esparza H, Ozcan A, Guo X, Bange G, et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol. 2019;16(4):504–17.

Article  PubMed  Google Scholar 

Lawhorn IE, Ferreira JP, Wang CL. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53. PLoS ONE. 2014;9(11):e113232.

Article  PubMed  PubMed Central  Google Scholar 

Galonska C, Charlton J, Mattei AL, Donaghey J, Clement K, Gu H, et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat Commun. 2018;9(1):597.

Article  PubMed  PubMed Central  Google Scholar 

Pflueger C, Tan D, Swain T, Nguyen T, Pflueger J, Nefzger C, et al. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res. 2018;28(8):1193–206.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 2012;40(14):6725–40.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kungulovski G, Nunna S, Thomas M, Zanger UM, Reinhardt R, Jeltsch A. Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenet Chromatin. 2015;8:12.

Article  Google Scholar 

Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44(12):5615–28.

Article  PubMed  PubMed Central  CAS  Google Scholar 

O’Geen H, Ren C, Nicolet CM, Perez AA, Halmai J, Le VM, et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 2017;45(17):9901–16.

Article  PubMed  PubMed Central  CAS  Google Scholar 

O’Geen H, Tomkova M, Combs JA, Tilley EK, Segal DJ. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res. 2022;50(6):3239–53.

Article 

留言 (0)

沒有登入
gif