Mechanisms of landiolol-mediated positive inotropy in critical care settings

Shiga T (2022) Benefits and safety of landiolol for rapid rate control in patients with atrial tachyarrhythmias and acute decompensated heart failure. Eur Heart J Suppl 24:D11–D21. https://doi.org/10.1093/eurheartjsupp/suac023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iguchi S, Iwamura H, Nishizaki M, Hayashi A, Senokuchi K, Kobayashi K, Sakaki K, Hachiya K, Ichioka Y, Kawamura M (1992) Development of a highly cardioselective ultra short-acting beta-blocker, ONO-1101. Chem Pharm Bull (Tokyo) 40:1462–1469. https://doi.org/10.1248/cpb.40.1462. PMID: 1356643

Nasrollahi-Shirazi S, Sucic S, Yang Q, Freissmuth M, Nanoff C (2016) Comparison of the β-adrenergic receptor antagonists landiolol and esmolol: receptor selectivity, partial agonism, and pharmacochaperoning actions. J Pharmacol Exp Ther 359:73–81. https://doi.org/10.1124/jpet.116.232884

Article  CAS  PubMed  Google Scholar 

Eagle Pharmaceuticals announces submission of New Drug Application to US Food and Drug Administration for landiolol, a beta-1 adrenergic blocker. News release (2003) Eagle Pharmaceuticals, Inc. https://www.globenewswire.com/news-release/2022/06/01/2454027/0/en/Eagle-Pharmaceuticals-Announces-Submission-of-New-Drug-Application-to-U-S-Food-and-Drug-Administration-for-Landiolol-a-Beta-1-Adrenergic-Blocker.html. Accessed 17 May 2023

Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL, ESC Scientific Document Group (2021) 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42:373–498. https://doi.org/10.1093/eurheartj/ehaa612

Domanovits H, Wolzt M, Stix G (2018) Landiolol: pharmacology and its use for rate control in atrial fibrillation in an emergency setting. Eur Heart J Suppl 20:A1–A3. https://doi.org/10.1093/eurheartj/sux037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garnock-Jones KP (2012) Esmolol: a review of its use in the short-term treatment of tachyarrhythmias and the short-term control of tachycardia and hypertension. Drug 72:109–132. https://doi.org/10.2165/11208210-000000000-00000

Article  CAS  Google Scholar 

Sasao J, Tarver SD, Kindscher JD, Taneyama C, Benson KT, Goto H (2001) In rabbits, landiolol, a new ultra-short-acting beta-blocker, exerts a more potent negative chronotropic effect and less effect on blood pressure than esmolol. Can J Anaesth 48:985–989. https://doi.org/10.1007/BF03016588

Article  CAS  PubMed  Google Scholar 

Ikeshita K, Nishikawa K, Toriyama S, Yamashita T, Tani Y, Yamada T, Asada A (2008) Landiolol has a less potent negative inotropic effect than esmolol in isolated rabbit hearts. J Anesth 22:361–366. https://doi.org/10.1007/s00540-008-0640-4

Article  PubMed  Google Scholar 

Wada Y, Aiba T, Tsujita Y, Itoh H, Wada M, Nakajima I, Ishibashi K, Okamura H, Miyamoto K, Noda T, Sugano Y, Kanzaki H, Anzai T, Kusano K, Yasuda S, Horie M, Ogawa H (2016) Practical applicability of landiolol, an ultra-short-acting β1-selective blocker, for rapid atrial and ventricular tachyarrhythmias with left ventricular dysfunction. J Arrhythm 32:82–88. https://doi.org/10.1016/j.joa.2015.09.002

Article  PubMed  Google Scholar 

Shibata O, Nishioka K, Yamaguchi M, Makita T, Sumikawa K (2008) High concentrations of landiolol, a beta(1)-adrenoceptor antagonist, stimulate smooth muscle contraction of the rat trachea through the Rho-kinase pathway. J Anesth 22:21–26. https://doi.org/10.1007/s00540-007-0567-1

Article  PubMed  Google Scholar 

Plosker GL (2013) Landiolol: a review of its use in intraoperative and postoperative tachyarrhythmias. Drugs 73:959–977. https://doi.org/10.1007/s40265-013-0077-4

Article  CAS  PubMed  Google Scholar 

Hasuo H, Tomiyasu S, Hojo M, Fujigaki T, Fukusaki M, Sumikawa K (1998) Effect of ONO-1101, a novel short-acting β-blocker on hemodynamic responses to isoflurane inhalation and tracheal intubation. J Anesth 12:115–118. https://doi.org/10.1007/BF02480087

Article  PubMed  Google Scholar 

Hasegawa D, Sato R, Nishida O (2021) β1-blocker in sepsis. J Intensive Care 9:39. https://doi.org/10.1186/s40560-021-00552-w

Article  PubMed  PubMed Central  Google Scholar 

Hasegawa D, Sato R, Prasitlumkum N, Nishida K, Takahashi K, Yatabe T, Nishida O (2021) Effect of ultrashort-acting β-blockers on mortality in patients with sepsis with persistent tachycardia despite initial resuscitation: a systematic review and meta-analysis of randomized controlled trials. Chest 159:2289–2300. https://doi.org/10.1016/j.chest.2021.01.009

Article  CAS  PubMed  Google Scholar 

Brodde OE, Schüler S, Kretsch R, Brinkmann M, Borst HG, Hetzer R, Reidemeister JC, Warnecke H, Zerkowski HR (1986) Regional distribution of beta-adrenoceptors in the human heart: coexistence of functional beta 1- and beta 2-adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. J Cardiovasc Pharmacol 8:1235–1242. https://doi.org/10.1097/00005344-198611000-00021

Article  CAS  PubMed  Google Scholar 

Michel MC, Insel PA (2006) Adrenergic receptors in clinical medicine. In: Perez D (ed) The receptors: the adrenergic receptors in clinical medicine. Humana Press Inc., Totowa, NJ, pp 129–147

Chapter  Google Scholar 

Wachter SB, Gilbert EM (2012) Β-Adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 122:104–112. https://doi.org/10.1159/000339271

Article  CAS  PubMed  Google Scholar 

Kobayashi S, Susa T, Tanaka T, Murakami W, Fukuta S, Okuda S, Doi M, Wada Y, Nao T, Yamada J, Okamura T, Yano M, Matsuzaki M (2012) Low-dose β-blocker in combination with milrinone safely improves cardiac function and eliminates pulsus alternans in patients with acute decompensated heart failure. Circ J 76:1646–1653. https://doi.org/10.1253/circj.cj-12-0033

Sakaguchi M, Sasaki Y, Hirai H, Hosono M, Nakahira A, Seo H, Suehiro S (2012) Efficacy of landiolol hydrochloride for prevention of atrial fibrillation after heart valve surgery. Int Heart J 53:359–363. https://doi.org/10.1536/ihj.53.359

Article  CAS  PubMed  Google Scholar 

Hamaguchi S, Nagao M, Takahashi Y, Ikeda T, Yamaguchi S (2014) Low dose landiolol combined with catecholamine can decrease heart rate without suppression of cardiac contraction after cardiopulmonary bypass. Dokkyo J Med Sci 41:27–33

Google Scholar 

Kobayashi S, Murakami W, Myoren T, Tateishi H, Okuda S, Doi M, Nao T, Wada Y, Matsuzaki M, Yano M (2014) A low-dose β1-blocker effectively and safely slows the heart rate in patients with acute decompensated heart failure and rapid atrial fibrillation. Cardiology 127:105–113. https://doi.org/10.1159/000355312

Sakai M, Jujo S, Kobayashi J, Ohnishi Y, Kamei M (2019) Use of low-dose β1-blocker for sinus tachycardia in patients with catecholamine support following cardiovascular surgery: a retrospective study. J Cardiothorac Surg 14:145. https://doi.org/10.1186/s13019-019-0966-z

Article  PubMed  PubMed Central  Google Scholar 

Ditali V, Garatti L, Morici N, Villanova L, Colombo C, Oliva F, Sacco A (2022) Effect of landiolol in patients with tachyarrhythmias and acute decompensated heart failure (ADHF): a case series. ESC Heart Fail 9:766–770. https://doi.org/10.1002/ehf2.13763

Article  PubMed  Google Scholar 

Dabrowski W, Siwicka-Gieroba D, Piasek E, Schlegel TT, Jaroszynski A (2020) Successful combination of landiolol and levosimendan in patients with decompensated heart failure. Int Heart J 61:384–389. https://doi.org/10.1536/ihj.19-420

Article  PubMed  Google Scholar 

Fujiwara H, Sakurai M, Namai A, Kawamura T (2009) Effect of low-dose landiolol, an ultrashort-acting beta-blocker, on postoperative atrial fibrillation after CABG surgery. Gen Thorac Cardiovasc Surg 57:132–137. https://doi.org/10.1007/s11748-008-0341-9

Article  PubMed  Google Scholar 

Feuerstein TJ, Krumpl G (2022) The superselective β1-blocker landiolol enhances inotropy of endogenous and exogenous catecholamines in acute heart failure. Cardiol Cardiovasc Med 6:502–511. https://doi.org/10.26502/fccm.92920291

Gherbi K, May LT, Baker JG, Briddon SJ, Hill SJ (2015) Negative cooperativity across β1-adrenoceptor homodimers provides insights into the nature of the secondary low-affinity CGP 12177 β1-adrenoceptor binding conformation. FASEB J 29:2859–2871. https://doi.org/10.1096/fj.14-265199

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815. https://doi.org/10.1007/s00134-014-3525-z

Article  PubMed  PubMed Central  Google Scholar 

Guarracino F, Baldassarri R, Pinsky MR (2013) Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care 17:213. https://doi.org/10.1186/cc12522

Article  PubMed  PubMed Central  Google Scholar 

Ohte N, Cheng CP, Little WC (2003) Tachycardia exacerbates abnormal left ventricular-arterial coupling in heart failure. Heart Vessels 18:136–141. https://doi.org/10.1007/s00380-003-0697-9

Article  PubMed  Google Scholar 

Gambert S, Héliès-Toussaint C, Grynberg A (2007) Extracellular glycerol regulates the cardiac energy balance in a working rat heart model. Am J Physiol Heart Circ Physiol 292:H1600–1606. https://doi.org/10.1152/ajpheart.00563.2006

Duckles SP, Jensen RA (1972) Effects of glycerol treatment on contractility and transmembrane potentials in cardiac tissue. J Mol Cell Cardiol 4:49–58. https://doi.org/10.1016/0022-2828(72)90096-x

Article  CAS  PubMed  Google Scholar 

Cheav SL, Chahine R, Mroué MS (1992) Inotropic and chronotropic effect of glycerol formal on the isolated rabbit heart. Arzneimittelforschung 42:997–1000

CAS  PubMed  Google Scholar 

Barbee JH, Cokelet GR (1971) The Fahraeus effect. Microvasc Res 3:6–16. https://doi.org/10.1016/0026-2862(71)90002-1

Article  CAS  PubMed  Google Scholar 

Yang J, Yoo SS, Lee TR (2017) Effect of fractional blood flow on plasma skimming in the microvasculature. Phys Rev E 95:040401. https://doi.org/10.1103/PhysRevE.95.040401

Article  PubMed  Google Scholar 

Reinhart WH, Piety NZ, Shevkoplyas SS (2017) Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhraeus effect) in an artificial microvascular network. Microcirculation 24. https://doi.org/10.1111/micc.12396

Lupu F, Kinasewitz G, Dormer K (2020) The role of endothelial shear stress on haemodynamics, inflammation, coagulation and glycocalyx during sepsis. J Cell Mol Med 24:12258–12271. https://doi.org/10.1111/jcmm.15895

Article  PubMed  PubMed Central  Google Scholar 

Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167:609–618. https://doi.org/10.1016/S0002-9440(10)63002-7

Article  CAS 

留言 (0)

沒有登入
gif