Synovium-Derived Mesenchymal Stem Cell-Based Scaffold-Free Fibrocartilage Engineering for Bone–Tendon Interface Healing in an Anterior Cruciate Ligament Reconstruction Model

Maffulli N, Wong J, Almekinders LC. Types and epidemiology of tendinopathy. Clin Sports Med. 2003;22:675–92.

Article  PubMed  Google Scholar 

van der List JP, Mintz DN, DiFelice GS. The location of anterior cruciate ligament tears: a prevalence study using magnetic resonance imaging. Orthop J Sports Med. 2017;5:2325967117709966.

PubMed  PubMed Central  Google Scholar 

Parkkari J, Pasanen K, Mattila VM, Kannus P, Rimpelä A. The risk for a cruciate ligament injury of the knee in adolescents and young adults: a population-based cohort study of 46 500 people with a 9 year follow-up. Br J Sports Med. 2008;42:422–6.

Article  CAS  PubMed  Google Scholar 

Moses B, Orchard J, Orchard J. Systematic review: Annual incidence of ACL injury and surgery in various populations. Res Sports Med. 2012;20:157–79.

Article  PubMed  Google Scholar 

Chung KS, Kim JH, Kong DH, Park I, Kim JG, Ha JK. An increasing trend in the number of anterior cruciate ligament reconstruction in Korea: a nationwide epidemiologic study. Clin Orthop Surg. 2022;14:220–6.

Article  PubMed  Google Scholar 

Rayan F, Nanjayan SK, Quah C, Ramoutar D, Konan S, Haddad FS. Review of evolution of tunnel position in anterior cruciate ligament reconstruction. World J Orthop. 2015;6:252–62.

Article  PubMed  PubMed Central  Google Scholar 

Kim JG, Kang SH, Kim JH, Lim CO, Wang JH. Comparison of clinical results, second-look arthroscopic findings, and MRI findings between the transportal and outside-in techniques for double-bundle anatomic anterior cruciate ligament reconstruction: a prospective, randomized controlled trial with a minimum 2-year follow-up. Am J Sports Med. 2018;46:544–56.

Article  PubMed  Google Scholar 

Liukkonen RJ, Ponkilainen VT, Reito A. Revision rates after primary ACL reconstruction performed between 1969 and 2018: a systematic review and metaregression analysis. Orthop J Sports Med. 2022;10:23259671221110190.

Article  PubMed  PubMed Central  Google Scholar 

Di Benedetto P, Di Benedetto E, Fiocchi A, Beltrame A, Causero A. Causes of failure of anterior cruciate ligament reconstruction and revision surgical strategies. Knee Surg Relat Res. 2016;28:319–24.

Article  PubMed  PubMed Central  Google Scholar 

Yin Z, Chen X, Zhu T, Hu J-j, Song H-x, Shen W-l, et al. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomaterialia. 2013;9:9317–29.

Castricini R, Longo UG, De Benedetto M, Panfoli N, Pirani P, Zini R, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair:a randomized controlled trial. Am J Sports Med. 2011;39:258–65.

Article  PubMed  Google Scholar 

Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev. 2015;94:126–40.

Article  CAS  PubMed  Google Scholar 

Jiang X, Kong Y, Kuss M, Weisenburger J, Haider H, Harms R, et al. 3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration. Appl Mater Today. 2022;27: 101510.

Article  Google Scholar 

Du L, Qin C, Zhang H, Han F, Xue J, Wang Y, et al. Multicellular bioprinting of biomimetic inks for tendon-to-bone regeneration. Adv Sci. 2023;10:2301309.

Article  CAS  Google Scholar 

Balestri W, Hickman GJ, Morris RH, Hunt JA, Reinwald Y. Triphasic 3D in vitro model of bone-tendon-muscle interfaces to study their regeneration. Cells. 2023;12:313.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu X, Si Y, Zhao Y, Ke Q, Hu J. Electrospun textile strategies in tendon to bone junction reconstruction. Adv Fiber Mater. 2023;5:764–90.

Article  Google Scholar 

Yang R, Zheng Y, Zhang Y, Li G, Xu Y, Zhang Y, et al. Bipolar metal flexible electrospun fibrous membrane based on metal–organic framework for gradient healing of tendon-to-bone interface regeneration. Adv Healthcare Mater. 2022;11:2200072.

Article  CAS  Google Scholar 

Soo Kim B, Ji Kim E, Suk Choi J, Hoon Jeong J, Hyunchul Jo C, Woo CY. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J Biomed Mater Res, Part A. 2014;102:4044–54.

Article  Google Scholar 

Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 2009;9:2763–8.

Article  PubMed  PubMed Central  Google Scholar 

Zhang H, Ma Y, Wang Y, Niu L, Zou R, Zhang M, et al. Rational design of soft–hard interfaces through bioinspired engineering. Small. 2023;19:2204498.

Article  CAS  Google Scholar 

Han F, Zhang P, Sun Y, Lin C, Zhao P, Chen J. Hydroxyapatite-doped polycaprolactone nanofiber membrane improves tendon-bone interface healing for anterior cruciate ligament reconstruction. Int J Nanomedicine. 2015;10:7333–43.

CAS  PubMed  PubMed Central  Google Scholar 

Chung EJ, Sugimoto MJ, Koh JL, Ameer GA. A biodegradable tri-component graft for anterior cruciate ligament reconstruction. J Tissue Eng Regen Med. 2017;11:704–12.

Article  CAS  PubMed  Google Scholar 

Erickson IE, Kestle SR, Zellars KH, Dodge GR, Burdick JA, Mauck RL. Improved cartilage repair via in vitro pre-maturation of MSC-seeded hyaluronic acid hydrogels. Biomed Mater. 2012;7: 024110.

Article  PubMed  PubMed Central  Google Scholar 

Mifune Y, Matsumoto T, Takayama K, Terada S, Sekiya N, Kuroda R, et al. Tendon graft revitalization using adult anterior cruciate ligament (ACL)-derived CD34+ cell sheets for ACL reconstruction. Biomaterials. 2013;34:5476–87.

Article  CAS  PubMed  Google Scholar 

Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res. 2008;332:469–78.

Article  PubMed  Google Scholar 

Ouyang HW, Goh JC, Lee EH. Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med. 2004;32:321–7.

Article  PubMed  Google Scholar 

Chen CH, Liu HW, Tsai CL, Yu CM, Lin IH, Hsiue GH. Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am J Sports Med. 2008;36:461–73.

Article  PubMed  Google Scholar 

Li F, Jia H, Yu C. ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc. 2007;15:1219–27.

Article  PubMed  Google Scholar 

Mifune Y, Matsumoto T, Ota S, Nishimori M, Usas A, Kopf S, et al. Therapeutic potential of anterior cruciate ligament-derived stem cells for anterior cruciate ligament reconstruction. Cell Transplant. 2012;21:1651–65.

Article  PubMed  Google Scholar 

Li YG, Wei JN, Lu J, Wu XT, Teng GJ. Labeling and tracing of bone marrow mesenchymal stem cells for tendon-to-bone tunnel healing. Knee Surg Sports Traumatol Arthrosc. 2011;19):2153–8.

Soon MY, Hassan A, Hui JH, Goh JC, Lee EH. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med. 2007;35:962–71.

Article  PubMed  Google Scholar 

Lui PP, Wong OT, Lee YW. Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42:681–9.

Article  PubMed  Google Scholar 

Shaw HM, Benjamin M. Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports. 2007;17:303–15.

Article  CAS  PubMed  Google Scholar 

Park DY, Min BH, Park SR, Oh HJ, Truong MD, Kim M, et al. Engineered cartilage utilizing fetal cartilage-derived progenitor cells for cartilage repair. Sci Rep. 2020;10:5722.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chahla J, Moatshe G, Cinque ME, Godin J, Mannava S, LaPrade RF. Arthroscopic anatomic single-bundle anterior cruciate ligament reconstruction using bone-patellar tendon-bone autograft: pearls for an accurate reconstruction. Arthrosc Tech. 2017;6:e1159–67.

Article  PubMed  PubMed Central  Google Scholar 

Minehara H, Urabe K, Naruse K, Mehlhorn AT, Uchida K, Südkamp NP, et al. A new technique for seeding chondrocytes onto solvent-preserved human meniscus using the chemokinetic effect of recombinant human bone morphogenetic protein-2. Cell Tissue Bank. 2011;12:199–207.

Article  CAS  PubMed  Google Scholar 

Forriol F, Ripalda P, Duart J, Esparza R, Gortazar AR. Meniscal repair possibilities using bone morphogenetic protein-7. Injury. 2014;45:S15-21.

Article  PubMed  Google Scholar 

Ozeki N, Muneta T, Koga H, Katagiri H, Otabe K, Okuno M, et al. Transplantation of achilles tendon treated with bone morphogenetic protein 7 promotes meniscus regeneration in a rat model of massive meniscal defect. Arthritis Rheum. 2013;65:2876–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puetzer JL, Brown BN, Ballyns JJ, Bonassar LJ. The effect of IGF-I on anatomically shaped tissue-engineered menisci. Tissue Eng Part A. 2013;19:1443–50.

Article  CAS  PubMed  Google Scholar 

Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res. 2009;467:3165–74.

Article 

留言 (0)

沒有登入
gif